

Rimage Client API™

Programming Guide
For Rimage Software Development Kit 9.0

110700_L ©2014, Rimage Corporation

Corporate Headquarters:
Rimage Corporation
7725 Washington Avenue South
Minneapolis, MN 55439
USA
800-553-8312 (toll free US)
Service: +1 952-946-0004 (Asia/Pacific,
Mexico/Latin America)
Fax: +1 952-944-6956

European Headquarters:

Rimage Europe GmbH
Albert-Einstein-Str. 26
63128 Dietzenbach Germany

Tel: +49-(0) 6074-8521-0
Fax: +49-(0) 6074-8521-100

Rimage Corporation reserves the right to make
improvements to the equipment and software
described in this document at any time without any
prior notice. Rimage Corporation reserves the right to
revise this publication and to make changes from time
to time in the content hereof without obligation of
Rimage Corporation to notify any person or
organization of such revisions or changes.

This document may contain links to web sites that were
current at the time of publication, but may have moved
or become inactive since. This document may contain
links to sites on the Internet that are owned and
operated by third parties. Rimage Corporation is not
responsible for the content of any such third-party site.

©2014, Rimage Corporation

Rimage® is a registered trademark of the Rimage
Corporation. SDK™ is a trademark of the Rimage
Corporation. Dell is registered trademark of Dell
Computer Corporation. FireWire is a registered
trademark of Apple Computer, Inc.

All other trademarks and registered trademarks are the
property of their respective owners.

Contents

Important Information ... 1
Support Information ... 1
Learn More Online .. 1

Introduction .. 2
Overview ... 2
Installed Location ... 2

Client API Design .. 3
Client API Use of XML .. 5

XML Encoding Format for Production Server and Imaging Server ... 5
Rimage DTDs .. 6
DTD Location .. 7
DTD Versions .. 7

Client ID and Order ID Uniqueness Rules .. 7
Client API Programming Class Definitions ... 8

System-Related Operations Group .. 8
Server-Related Operations Group ... 8
Order-Related Operations Group .. 8

System Management ... 9
Connect to the System .. 9

SystemManager.Connect() ... 9
SystemManager.Disconnect() ... 9
Sample Code ... 9

Start/End Session using .NET with C# .. 9
Start/End Session using Java .. 10
Start/End Session using C++ ... 10
Start/End Session using C .. 11
Start/End Session using VB 6 .. 11

Listen for System Events .. 12
SystemManager.listenForSystemStatus(SystemListener) ... 12
SystemListener.onSystemStatus() ... 12
SystemListener.onSystemException() .. 12
SystemListener.onClusterCreated() ... 12
SystemManager.onClusterDeleted().. 12
SystemManager.removeSystemListener() .. 12
Sample Code ... 12

Listen for System Events using .NET with C#... 12
Listen for System Events using Java... 13
Listen for System Events using C++ ... 15
Listen for System Events using C ... 15
Listen for System Events using VB 6 .. 16

Server Management .. 18
Listening for Server Events .. 18

ServerManager.listenForServerEvents(ServerEventListener) ... 18
ServerManager.removeServerEventListener() .. 18
Sample Code ... 18

Listen for Server Events using .NET with C# .. 18
Listen for Server Events using Java .. 21
Listen for Server Events using C++ .. 22
Listen for Server Events using C .. 24
Listen for Server Events using VB 6 ... 24

110700_L ©2014, Rimage Corporation

Synchronous Server Methods .. 26
Sample Code ...26

Server Methods using .NET with C# .. 26
Server Methods using Java .. 27
Server Methods using C++ ... 28
Server Methods using C... 28
Server Methods using VB 6 .. 29

Order Management .. 30
Submit Orders .. 30
Order Management Methods .. 31

OrderDescription Parameter ..31
XMLOrder Parameter ...31
OrderStatusListener ...31

OrderDescription ... 32
OrderDescription Object as a Return Value ..32
Cancel an Order in Process ...32
Recover Orders ...33
OrderDescription Base Class ...33
ImageOrderDescription Sub Class ...34
ProductionOrderDescription Sub Class ..34

Streaming .. 35
Spanning ... 36
Order Management Sample Code .. 37

Order Management using .NET with C# ...37
Order Management using Java ...39
Order Management using C++ ..40
Order Management using C ..42
Order Management using VB 6 ...43

Server Status and Control Protocol .. 47
Server Command Synchronization ... 47
Password Protection on Commands .. 48
Production Server Commands ... 48

Command Summary ..49
Command Reply ..50
Command Details ..51

Imaging Server Commands .. 54
Command Summary ..54
Command Reply ..55
Command Details ..56

Deployment ... 57
Java Deployment .. 57

Build Information ..57
Required Files ...57

.NET Deployment ... 57
Build Information ..57
Required .NET Assembly Files ...57

C / C++ / VB 6 Deployment .. 57
Build Information ..57
Required Linker Options ...58
Required Files and Folders ...58

Required DLL Files (Non-Unicode) .. 58
Required DLL Files (Unicode).. 58
Microsoft visual C++ 2013 Redistributable Pack is Required. .. 58
Required LIB Files (Non-Unicode) ... 58

Required LIB Files (Unicode) .. 58
Required Include Directories .. 59
Required #include Statements ... 59
Optional files ... 59
64 bit deployment .. 59

Appendix A – Sample Source Code Projects ... 61

Appendix B – Sample XML Documents .. 63
Image Order Samples .. 63

ISO L2 with Editlist Image Order.. 63
ISO L2 from Parent Folder Image Order ... 63
RockRidge Image Order ... 64

Production Order Samples ... 65
Audio Production Order ... 66
Blue Book Production Order ... 67
Mode 1 Production Order .. 68
Print Only Production Order ... 69
Data Disc Production Order .. 69

Order Status Samples .. 70
Image Order Status ... 70
Production Order Status .. 70

Spanning XML Samples ... 70
Image Order ... 70
Image Order Status ... 71
Order Set .. 71
Order Set Status .. 72
Production Orders ... 72
Production Order Statuses ... 73

Server Configuration Samples .. 73
Production Server Configuration ... 73
Imaging Server Configuration ... 74

Server Dialog Samples ... 74
Alert Dialog .. 74
Error Dialog .. 75

Server Request / Reply Samples ... 75
GetServerStatus Request ... 75
GetServerStatus Reply ... 75
SetParameter Request ... 76
SetParameter Reply ... 77

Appendix C – Server Status and Control Password Encryption 78
Encryption Method ... 78
Rimage Core Encryption Algorithm ... 78
Password Encoding Samples Using C++ ... 79

Encoding and Decoding a MBCS String .. 79
Encoding and Decoding a Unicode String ... 80

Appendix D – Error Codes ... 84
Production Order Status Codes .. 84
Production Server Reply Error Codes .. 87
Image Order Status Codes ... 89

110700_L ©2014, Rimage Corporation

Important Information

Important Information
This section provides support contact information, cautions and warnings, and product specifications for the
SDK.

Support Information
US, Asia/Pacific, Mexico/Latin America Europe

Rimage Corporation
7725 Washington Avenue South
Minneapolis, MN 55439
USA
Attn: Rimage Services

Rimage Europe GmbH
Albert-Einstein-Str. 26
63128 Dietzenbach Germany

Contact Rimage Services:
Website: www.rimage.com/support
KnowledgeBase: http://www.rimage.custhelp.com
Log in and select the Ask a Question tab.
Telephone:
North America: 800-553-8312
Asia/Pacific, Mexico/ Latin America: 952-946-0004
Fax: 952-946-6956

Contact Rimage Services Europe:
Website: www.rimage.de
Email: support@rimage.de
Telephone: +49 1805-7462-43
Fax: +49 6074-8521-101

When you contact Rimage Services, please provide:

• System serial number and software version.
• Functional and technical description of the

problem.

• Exact error message received.

My Rimage Product Information:
Copy this information from your Rimage Product for
future reference.
Note: Make sure you update the Serial Number
here anytime you receive a replacement
autoloader.

Serial Number:

Product Name:

Date of Purchase:

Learn More Online
At www.rimage.com/support, you can experience Rimage’s world-class Support and Services.

From the Support home page:
1. Select your product series.
2. Select your product.
3. Learn more on the product page.

From the product page you can access:
 Information about the latest software and

firmware updates
 Product specifications
 The latest documents
 Current firmware and driver downloads

110700_L 1

http://www.rimage.com/support.html
http://www.rimage.com/support_form.cfm
http://www.rimage.de/
mailto:support@rimage.de
http://www.rimage.com/support.html

Introduction
The Client API allows third-party developers and users to access Rimage Production Orders and Image Orders.
The Client API includes Rimage XML DTDs as well as a set of Java and C/C++ APIs. The Client API provides an
open and platform-independent way to access the publishing power of Rimage systems.

This document provides programming information necessary to create a custom application using the Rimage
Software Development Kit (SDK). This includes Client API programming, Rimage XML APIs, and XML- based
Status and Control for Production and Imaging Server.

Overview
The Client API consists of two parts:
The programming interface

The XML interface

The programming interface acts as a conduit for passing information between the client and the Rimage
server. The data that is passed from the programming interface to the Rimage server is described in XML. The
XML document can include order information, order status, and server information. The use of XML allows the
programming interface to stay fairly simple and look almost identical across languages (Java, C++, etc.). When
future additions are needed, only the XML definitions (DTDs) should require change and not the programming
interface.

Installed Location
The Rimage SDK is typically installed at C:\Program Files (x86)\RimageSDK on 64-bit Windows and in
C:\Program Files\RimageSDK on 32-bit Windows. Wherever C:\Program Files (x86)\RimageSDK is stated in this
document, the actual location may be C:\Program Files\RimageSDK.

Client API Design

Client API Design
Client APIs exist in Java, C / C++, and .NET.

• The C++ and C APIs are written for Windows only and are packaged as DLLs. The C++ and C APIs are
Microsoft Visual C++ compatible.

• The Java Client APIs are compatible with JDK version 1.7 and above.

The Client API layer presents a client-based interface that allows Rimage applications and third-party
applications to perform actions that include submitting orders, receiving unsolicited order statuses, canceling
orders, receiving unsolicited system statuses, and setting server parameters.

The illustration below shows the Rimage Client API layers and overall organization in a distributed
deployment.

Rimage Client API Layers

110700_L 3

The UML (Unified Modeling Language) diagram of the Client API is shown in the figure below.

Client API Interface UML Diagram

Client API Design

Client API Use of XML
The Client API uses XML to pass data from the programming interface to the Rimage server. The XML
document must conform to a Rimage DTD. To validate incoming and outgoing XML documents, each software
component must access the Rimage DTD.

. Note: It is the end user's responsibility to validate the XML strings before sending the XML document.

XML Encoding Format for Production Server and Imaging Server
The image and production orders XML can be either Unicode or MBCS (ANSI) depending on compiler model
and the linked dll’s.

The Image Server order XML may contain an editlist entry. This can be embedded, and then must use the
same character encoding as the image order. It is also possible to reference an external editlist xml file. This
file can be in UTF-8, UTF-16, or Unicode. The BOM (byte order mark) must be set correctly as the image server
uses it to determine the encoding type.

The XML encoding option is not required in editlist files, but it may be set as appropriate for the chosen
encoding. For example:

<?xml version="1.0" encoding="UTF-8"?>

110700_L 5

Rimage DTDs
The following DTDs are provided by the Producer Software Suite 9.x installation and are used by the Rimage
components and third-party applications.

These Rimage DTDs can be grouped into several categories:

. Note: The actual file that is installed has a version number appended
(e.g., ProductionServerConfiguration_1.15.dtd).

DTD Type Related DTDs

Order ImageOrder.dtd
ProductionOrder.dtd
CdText.dtd

Image Editlist EditList.dtd

Order Status ProductionOrderStatus.dtd
ImageOrderStatus.dtd

Spanning OrderSet.dtd
OrderSetStatus.dtd

Server Configuration ProductionServerConfiguration.dtd
ImageServerConfiguration.dtd
BridgeServerConfiguration.dtd

Server Dialogs AlertDialog.dtd
ErrorDialog.dtd

Server Status & Control ProductionServerRequest.dtd
ProductionServerReply.dtd
ImageServerRequest.dtd
ImageServerReply.dtd

Miscellaneous DiscMap.dtd
FullDiscMap.dtd

Client API Design

DTD Location
All Rimage components (e.g., Production Server, QuickDisc, or a third-party client application) must have
access to the DTDs used in the Rimage messaging system. During the Rimage SDK installation, the DTDs are
placed by default in the specified folder location C:\Program Files (x86)\RimageSDK\ApiSdk\XML . The SDK
installation procedure allows this folder location to be changed.

. Note: You can also change the folder location by running the install in Repair mode after an initial install
has been performed.

XML parsers must know the location of the DTD against which the XML document is verified. The full path to
the DTD must be specified in the XML document itself.

ϑ Important! If the document specifies just the name of the DTD, the parser assumes the DTD exists in the
current folder and errors out if this is not the case.

For example, if a client submits a Production Order for processing, the SYSTEM line must read something like
this:

<!DOCTYPE ProductionOrder SYSTEM "C:\rimage\xml\ProductionOrder_1.0.DTD">

DTD Versions
The version of a Rimage DTD is reflected in the DTD file name. For example, ProductionOrder_1.0.dtd is a 1.0
version of the ProductionOrder. Any change to the ProductionOrder increments the version and alter the DTD
file name accordingly. This allows multiple DTD versions to coexist in a single folder and ensures that the
version of each DTD is easily identified.

Client ID and Order ID Uniqueness Rules
Each ClientID and OrderID must be unique. To ensure order uniqueness, Rimage makes the following
recommendations:

• The ClientID must be used to connect to the Messaging Server (eMS). The Messaging Server requires
ClientID uniqueness and returns an error at connect time if a non-unique ClientID is detected. This ensures
ClientID uniqueness.

. Note: Because more than one instance of an application can be run on one machine, the Rimage
applications’ ClientID is in the form of <HostName> + "_" + <ApplicationInstanceId>.

• Developers must ensure that the OrderIDs that they generate are unique for a particular client
application. This still leaves the chance for two clients to generate identical OrderIDs, which is resolved in
the following requirement.

• Production and Imaging servers must take both OrderIDs and ClientIDs into account to ensure order
uniqueness internally to the server.

The ClientID and OrderID uniqueness rules:

• The OrderID is unique in the client application’s namespace.

• The ClientID is unique in the Messaging Server namespace.

• The ClientID includes the <HostName> + "_" + <ApplicationInstanceId>.

• Alphanumeric character entries are typical for the ClientID and OrderID. The entries are not case-
sensitive; however, use of the period “.” and backslash “\” must be excluded from the ClientID and
OrderID entries.

110700_L 7

Client API Programming Class Definitions
Rimage Client API usage breaks down into three groups of operations.

System-Related Operations Group
SystemManager is the main interface class for this group. This class allows you, the API user, to connect and
disconnect from the Messaging Server (eMS). It also allows you to set and get system-wide parameters, such
as synchronous calling timeout.

Server-Related Operations Group
ServerManager is the main interface class for this group. This class allows you to listen for server events,
control server states, and set and get server parameters.

Order-Related Operations Group
OrderManager is the main interface class for this group. This class allows you to submit orders, listen for order
status, cancel orders, etc.

System Management

System Management
Before you can use the Rimage system, the client application must connect to the Messaging Server (eMS)
using the SystemManager object. A client application connects to only one Messaging Server (eMS) at a time.
The client application is free to disconnect and connect to a Messaging Server running on another computer at
any time. After the client application connects to a Messaging Server, it can set up a listener to listen for
system events, such as exceptions.

Connect to the System
SystemManager.Connect()

This overloaded method allows the client to connect to the Messaging Server either on the localhost or
anywhere on the network by specifying a host IP address and port. The ClientID passed into this method must
be unique in the system. This uniqueness is the responsibility of the client and is enforced by the messaging
system. If the host IP address and port are not passed into the connect() method, connection is attempted to a
broker running on the local host with a default port. After the client process is connected to the Messaging
Server all the other system or order related operations are possible.

SystemManager.Disconnect()
When the client session is over, a SystemManager.disconnect() method is called. Once this method has been
called, all further operations throws an exception.

Sample Code

Start/End Session using .NET with C#
//Start session.

// This is the first method to call before any other in the API,

// typically when the client application initializes.

CSystemManager.Initialize();

if (bLocal)

{

// Connect locally with ClientID of ‘‘Client1’’,

// host ‘‘localhost’’ (default), port ‘‘4664’’ (default).

CSystemManager.GetInstance().Connect(‘‘Client1’’);

}

else

{

// Connect with clientId of ‘‘Client1’’, host ‘‘Computer1’’,

// port‘‘4664’’.

CSystemManager.GetInstance().Connect(‘‘Client1’’, ‘‘Computer1’’,’’4664’’);

}

//End session.

// No operations can be done with the API after this method is

// called.

SystemManager.GetInstance().Disconnect();

// This method needs to be the very last method called in the API

// typically when the client application is shutting down.

CSystemManager.Terminate();

110700_L 9

Start/End Session using Java
//Start session.

if (bLocal)

{

 // Connect locally with ClientID of ‘‘Client1’’,

 // host ‘‘localhost’’ (default), port ‘‘4664’’ (default).

 SystemManager.getInstance().connect(‘‘Client1’’);

}

else

{

 // Connect with ClientID of ‘‘Client1’’, host ‘‘Computer1’’,

 // port ‘‘4664’’.

 SystemManager.getInstance().connect(‘‘Client1’’, ‘‘Computer1’’,’’4664’’);

}

//End session.

// No operations can be done with the API after this method is called.

SystemManager.getInstance().disconnect();

Start/End Session using C++
//Start session.

if(bLocal)

{

// Connect locally with ClientID of ‘‘Client1’’,

// host ‘‘localhost’’ (default), port ‘‘4664’’ (default).

SystemManager::getInstance()->connect(‘‘Client1’’);

}

else

{

// Connect with ClientID of ‘‘Client1’’, host ‘‘Computer1’’, port ‘‘4664’’.

SystemManager::getInstance()->connect(‘‘Client1’’, ‘‘Computer1’’,’’4664’’);

}

//End session.

// No operations can be done with the API after this method is called.

SystemManager::getInstance()->disconnect();

// Clean up memory.

OrderManager::removeInstance();

SystemManager::removeInstance();

System Management

Start/End Session using C
/*Start session.*/

if(bLocalMessaging)

{

/* Connect locally with ClientID of ‘‘Client1’’, host ‘‘localhost’’ (default),
port ‘‘4664’’ (default).*/

 RCA_connect(‘‘Client1’’);

}

else

{

/* Connect with ClientID of ‘‘Client1’’, host ‘‘Computer1’’, port ‘‘4664’’.*/

 RCA_connectEx(‘‘Client1’’, ‘‘Computer1’’,’’4664’’);

}

/*End session.*/

/* No operations can be done with the API after this method is called.*/

RCA_disconnect();

Start/End Session using VB 6

. Note: Rimage recommends the use of the .NET API for VB.NET.
‘ Start session.

‘ Declare the functions.

Public Declare Function RCA_connect Lib "RmClient_9_0_n_8.dll" _

 (ByVal clientId As String) As Integer

Public Declare Function RCA_connectEx Lib "RmClient_9_0_n_8.dll" _

 (ByVal clientId As String, _

 ByVal host As String, _

 ByVal port As String) As Integer

Dim ret As Integer

‘ Connect locally with client ‘‘client1_VB’’.

ret = RCA_connect("client1_VB")

‘ End session.

‘ Declare the functions.

Public Declare Function RCA_disconnect Lib "RmClient_9_0_n_8.dll" () As Integer

Dim ret As Integer

‘ No operations can be done with the API after this method is called.

ret = RCA_disconnect();

110700_L 11

Listen for System Events
SystemManager.listenForSystemStatus(SystemListener)
This method allows the client process to receive information about system-wide events. The listener class
argument provides four callback methods while listening for system events:

SystemListener.onSystemStatus()
This callback method is called whenever a Production Server publishes a message consisting of an XML
instance of either the AlertDialog.DTD or the ErrorDialog.DTD. This method also receives any future additions
or changes to system type messages.

. Note: This callback is deprecated, instead use ServerEventListener.onServerAlert().

SystemListener.onSystemException()
This callback method is called if there is a problem with the messaging system, a connection broken event for
example. There is no XML passed into this method because the only errors are errors of connection to the
Broker.

. Note: The client application should go into a reconnect loop once the
SystemListener.onSystemException() callback method is received. It could take up to a minute for the
client application to reconnect once the connection has been reestablished.

SystemListener.onClusterCreated()
This callback method is called if a new cluster is created through an administration tool.

SystemManager.onClusterDeleted()
This callback method is called if a cluster is deleted through an administration tool.

SystemManager.removeSystemListener()
This callback method allows the client to stop receiving the system status messages.

Sample Code

Listen for System Events using .NET with C#
// Start listening.

// Class that will receive system status.

public class MySystemListener : ISystemListener

{

public void OnSystemException(SystemException e)

{

 Console.WriteLine("--- System Exception");

 Console.WriteLine(e);

}

public void OnClusterCreated(String cluster, int serverType)

{

 Console.WriteLine("--- Cluster Created");

 Console.WriteLine(cluster);

}

public void OnClusterDeleted(String cluster, int serverType)

{

System Management

 Console.WriteLine("--- Cluster Deleted");

 Console.WriteLine(cluster);

}

}

// Set up the system listener.

MySystemListener systemListener = new MySystemListener();

CSystemManager.GetInstance().ListenForSystemStatus(systemListener);

// Stop listening.

// We are done listening for system status.

CSystemManager.GetInstance().RemoveSystemListener();

Listen for System Events using Java
// Start listening.

// Class that will receive system status.

public class MySystemListener implements SystemListener

{

public void onSystemException(SystemException e)

{

 System.out.println("\n--- System Exception");

 System.out.println(e.getMessage());

 e.printStackTrace();

}

public void onClusterCreated(String cluster, int serverType)

{

 System.out.println("\n--- Cluster Created");

 System.out.println(cluster);

}

public void onClusterDeleted(String cluster, int serverType)

{

 System.out.println("\n--- Cluster Deleted");

 System.out.println(cluster);

}

public void onSystemStatus(String xmlSystemStatus)

{

 // The onSystemStatus method is deprecated -- use

 //ServerEventListener.onServerAlert.

 System.out.println("\n--- System Status");

 System.out.println(xmlSystemStatus);

}

}

// Set up the system listener.

MySystemListener systemListener = new MySystemListener ();

SystemManager.getInstance().listenForSystemStatus(systemListener);

// Stop listening.

// We are done listening for system status.

110700_L 13

SystemManager.getInstance().removeSystemListener();

System Management

Listen for System Events using C++
// Start listening.

// Class that will receive system status.

class MySystemListener : public SystemListener

{

 void onSystemStatus(LPCTSTR xmlSystemStatus);

 void onClusterCreated(LPCTSTR cluster, int serverType);

 void onClusterDeleted(LPCTSTR cluster, int serverType);

 void onSystemException(SystemException* e);

};

void MySystemListener::onSystemStatus(LPCTSTR xmlSystemStatus)

{

 // The onSystemStatus method is deprecated -- use

 // ServerEventListener::onServerAlert.

 printf("\n--- System Status");

 printf (xmlSystemStatus);

}

void MySystemListener::onSystemException(SystemException* e)

{

 printf("\n--- System Exception");

 e->printMessage();

 e->printStackTrace();

}

void MySystemListener::onClusterCreated(LPCTSTR cluster, int serverType)

{

 printf "\n--- Cluster Created");

 printf(cluster);

}

void MySystemListener::onClusterDeleted(LPCTSTR cluster, int serverType)

{

 printf("\n--- Cluster Deleted");

 printf(cluster);

}

// Set up the system listener.

MySystemListener systemListener;

SystemManager::getInstance()->listenForSystemStatus(&systemListener);

// Stop listening.

// We are done listening for system status.

SystemManager::getInstance()->removeSystemListener();

Listen for System Events using C
/* Start listening. */

/* Callback function to receive system status notifications. */

void CALLBACK systemStatusCallback(LPTSTR xmlSystemStatus)

{

 printf("\n--- System Status");

 printf (xmlSystemStatus);

110700_L 15

}

/* Callback function to receive new cluster notifications. */

void CALLBACK clusterCreatedCallback(LPTSTR cluster)

{

 printf "\n--- Cluster Created");

 printf(cluster);

}

/* Callback function to receive deleted cluster notifications. */

void CALLBACK clusterDeletedCallback(LPTSTR cluster)

{

 printf("\n--- Cluster Deleted");

 printf(cluster);

}

/* Callback function to receive system error notifications. */

void CALLBACK systemExceptionCallback(LPTSTR error)

{

 printf("\n--- System Exception");

 printf(error);

}

/* Set up to listen for system status. */

RCA_listenForSystemStatus(systemStatusCallback, clusterCreatedCallback,

clusterDeletedCallback, systemExceptionCallback);

/* Stop listening. */

/* We are done listening for system status. */

RCA_removeSystemListeners();

Listen for System Events using VB 6

. Note: Rimage recommends the use of the .NET API for VB.NET.
‘ Start listening.

‘ Declare the functions.

Public Declare Function RCA_listenForSystemStatusBstr Lib
"RmClient_9_0_n_8.dll"_

 (ByVal systemStatusCallback As Long,_

 ByVal clusterCreatedCallback As Long,_

 ByVal clusterDeletedCallback As Long,_

 ByVal systemExceptionCallback As Long) As Integer

‘ Declare callback functions.

Public Function systemExceptionCallback(ByVal error As String) As Long

MsgBox "Error : " & error

End Function

Public Function systemStatusCallback(ByVal systemStatus As String) As Long

Debug.Print "System status is " & systemStatus

End Function

Public Function clusterCreatedCallback(ByVal cluster As String) As Long

Debug.Print "Created cluster is " & cluster

System Management

End Function

Public Function clusterDeletedCallback(ByVal cluster As String) As Long

Debug.Print "Deleted cluster is " & cluster

End Function

‘ Set up to listen for system status.

ret = RCA_listenForSystemStatusBstr(AddressOf systemStatusCallback,_

AddressOf clusterCreatedCallback,_

AddressOf clusterDeletedCallback,_

AddressOf systemExceptionCallback)

‘ Stop listening.

‘ Declare the functions.

Public Declare Function RCA_removeSystemListeners Lib "RmClient_9_0_n_8.dll" ()
As Integer

Dim ret As Integer

‘ We are done listening for system status.

ret = RCA_removeSystemListeners()

110700_L 17

Server Management
Server management through the Client API consists of asynchronous and synchronous portions:

• Asynchronous – Information that the servers send to the Client API. For example, notification of server
configuration and server states.

• Synchronous – Requests that the caller sends to the server and the replies that the server sends back.

The following two sections describe listening for server events and synchronous server methods in detail and
provide code samples for reference.

Listening for Server Events
ServerManager.listenForServerEvents(ServerEventListener)

This method allows the client process to receive information about the servers that are active, becoming
active, or shutting down on the network. The ServerEventListener object passed into this method is called
when any of the above occurs. The information passed into the ServerEventListener.onServerActive() method
is in the form of an XML document (string), conforming to one of the following DTDs:

• ProductionServerConfiguration DTD

• ImageServerConfiguration DTD

• BridgeServerConfiguration DTD

• AlertDialog DTD

• ErrorDialog DTD

The rest of the methods take a single string whose value is the ServerID of the server that is changing states.

ServerManager.removeServerEventListener()

This method allows the client to stop receiving the above messages.

Sample Code

Listen for Server Events using .NET with C#
// Start listening.

// Class that will receive server notifications.

public class MyServerListener : IServerEventListener

{

public void OnServerActive(String xmlServerInfo)

{

 Console.WriteLine("--- Active Server Information");

 Console.WriteLine(xmlServerInfo);

}

public void OnServerStartPending(String serverId)

{

 Console.WriteLine("--- Start Pending Server Id");

 Console.WriteLine(Server Id);

}

public void OnServerPause(String serverId)

{

Server Management

 Console.WriteLine("--- Pause Server Id");

 Console.WriteLine(serverId);

}

public void OnServerResume(String serverId)

{

Console.WriteLine("--- Resume Server Id");

 Console.WriteLine(serverId);

}

public void OnServerPausePending(String serverId)

{

 Console.WriteLine("--- Pause Pending Server Id ");

 Console.WriteLine(serverId);

}

public void OnServerShutdownPending(String serverId)

{

 Console.WriteLine("--- Shutdown Pending Server Id");

 Console.WriteLine(serverId);

}

public void OnServerShutdown(String serverId)

{

 Console.WriteLine("--- Shutting down Server Id");

 Console.WriteLine(serverId);

}

public void OnServerAlert(String xmlDialog)

{

 Console.WriteLine("--- Server Dialog");

 Console.WriteLine(xmlDialog);

}

public void OnServerDialogAcknowledged(String serverId, String dialogId)

{

 Console.WriteLine("--- Server Dialog Acknowledged");

 Console.WriteLine(serverId + ‘‘, ‘‘ + dialogId);

}

void onServerStartupMessage(String serverId, String message)

{

 Console.WriteLine("--- Server Startup message");

 Console.WriteLine(serverId + ‘‘: ‘‘ + message);

}

}

// Set up the server listener.

MyServerListener serverListener = new MyServerListener();

CServerManager.GetInstance().ListenForServerEvents(serverListener);

// Stop listening.

// We are done listening for servers.

CServerManager.GetInstance().RemoveServerEventListener();

110700_L 19

Server Management

Listen for Server Events using Java
// Start listening.

// Class that will receive server notifications.

public class MyServerListener implements ServerEventListener

{

public void onServerActive(String xmlServerInfo)

{

 System.out.println("\n--- Active Server Information");

 System.out.println(xmlServerInfo);

}

public void onServerStartPending(String serverId)

{

 System.out.println("\n--- Start Pending Server ID");

 System.out.println(serverId);

}

public void onServerPause(String serverId)

{

 System.out.println("\n--- Pause Server ID");

 System.out.println(serverId);

}

public void onServerResume(String serverId)

{

 System.out.println("\n--- Resume Server ID");

 System.out.println(serverId);

}

public void onServerPausePending(String serverId)

{

 System.out.println("\n--- Pause Pending Server Id");

 System.out.println(serverId);

}

public void onServerShutdownPending(String serverId)

{

 System.out.println("\n--- Shutdown Pending Server Id");

 System.out.println(serverId);

}

public void onServerShutdown(String serverId)

{

 System.out.println("\n--- Shutting down Server Id");

 System.out.println(serverId);

}

public void onServerAlert(String xmlDialog)

{

 System.out.println("\n--- Server Dialog");

 System.out.println(xmlDialog);

}

public void onServerDialogAcknowledged(String serverId, String dialogId)

110700_L 21

{

 System.out.println("\n--- Server Dialog Acknowledged");

 System.out.println(serverId + ‘‘, ‘‘ + dialogId);

}

void onServerStartupMessage(String serverId, String message)

{

 System.out.println("--- Server Startup message");

 System.out.println(serverId + ‘‘: ‘‘ + message);

}

}

// Set up the server listener.

MyServerListener serverListener = new MyServerListener();

ServerManager.getInstance().listenForServerEvents(serverListener);

// Stop listening.

// We are done listening for servers.

ServerManager.getInstance().removeServerEventListener();

Listen for Server Events using C++
// Start listening.

// Class that will receive server notifications.

class MyServerListener : public ServerEventListener

{

 void onServerActive(LPCTSTR xmlServerInfo);

 void onServerStartPending(LPCTSTR serverId);

 void onServerPause(LPCTSTR serverId);

 void onServerPausePending(LPCTSTR serverId);

 void onServerResume(LPCTSTR serverId);

 void onServerShutdownPending(LPCTSTR serverId);

 void onServerShutdown(LPCTSTR serverId);

 void onServerAlert(LPCTSTR xmlDialog);

 void onServerDialogAcknowledged(LPCTSTR serverId);

 void onServerStartupMessage(LPCTSTR serverId, LPCTSTR message);

};

void MyServerListener::onServerActive(LPCTSTR xmlServerInfo)

{

 printf("\n--- Active Server Information");

 printf(xmlServerInfo);

}

void MyServerListener::onServerStartPending(LPCTSTR serverId)

{

 printf("\n--- Start Pending Server Id");

 printf(serverId);

}

void MyServerListener::onServerPause(LPCTSTR serverId)

{

 printf("\n--- Pause Server Id");

 printf(serverId);

Server Management

}

void MyServerListener::onServerResume(LPCTSTR serverId)

{

 printf("\n--- Resume Server Id");

 printf(serverId);

}

void MyServerListener::onServerPausePending(LPCTSTR serverId)

{

 printf("\n--- Pause Pending Server Id");

 printf(serverId);

}

void MyServerListener::onServerShutdownPending(LPCTSTR serverId)

{

 printf("\n--- Shutting down Pending Server Id");

 printf(serverId);

}

void MyServerListener::onServerShutdown(LPCTSTR serverId)

{

 printf("\n--- Shutting down Server Id");

 printf(serverId);

}

void MyServerListener::onServerAlert(LPCTSTR xmlDialog)

{

 printf("\n--- Server Dialog");

 printf(xmlDialog);

}

void MyServerListener:: onServerDialogAcknowledged(LPCTSTR serverId, LPCTSTR
dialogId)

{

 printf("\n--- Dialog Acknowledged ");

 printf(dialogId);

}

void MyServerListener:: onServerStartupMessage(LPCTSTR serverId, LPCTSTR
message)

{

 printf("\n--- Server Startup message ");

 printf(message);

}

// Set up the server listener.

MyServerListener serverListener;

ServerManager::getInstance()->listenForServerEvents(&serverListener);

// Stop listening.

// We are done listening for servers.

ServerManager::getInstance()->removeServerEventListener();

110700_L 23

Listen for Server Events using C
/* Start listening. */

/* Callback function to receive active server notifications. */

void CALLBACK serverActiveCallback(LPTSTR xmlServerInfo)

{

 printf("\n--- Active Server");

 printf(xmlServerInfo);

}

/* Callback function to receive server shutdown notifications. */

void CALLBACK serverShutdownCallback(LPTSTR serverId)

{

 printf("\n--- Shutdown Server");

 printf(serverId);

}

/* Set up to listen for servers. */

RCA_listenForServers(serverActiveCallback, serverShutdownCallback);

/* Stop listening. */

/* We are done listening for servers. */

RCA_removeServerListeners();

Listen for Server Events using VB 6

. Note: Rimage recommends the use of the .NET API for VB.NET.
‘ Start listening.

‘ Declare the functions.

Public Declare Function RCA_listenForServersBstr Lib "RmClient_9_0_n_8.dll"_

 (ByVal serverActiveCallback As Long,_

 ByVal serverShutdownCallback As Long) As Integer

‘ Declare callback functions.

Public Function serverActiveCallback(ByVal xmlServerActive As String) As_ Long

Debug.Print "Active server is " & xmlServerActive

End Function

Public Function serverShutdownCallback(ByVal server As String) As Long

Debug.Print "Shutdown server is " & server

End Function

‘ Set up to listen for servers.

ret = RCA_listenForServersBstr(AddressOf serverActiveCallback, AddressOf
serverShutdownCallback)

‘ Stop listening.

‘ Declare the functions.

Public Declare Function RCA_removeServerListeners Lib_ "RmClient_9_0_n_8.dll"()
As Integer

Dim ret As Integer

‘ We are done listening for servers.

ret = RCA_removeServerListeners()

Server Management

110700_L 25

Synchronous Server Methods
The caller of the Client API can start, restart, and stop any of the Rimage servers when running as a Windows
Service and using the following ServerManager methods directly:

• ServerManager.startService()

• ServerManager.restartService()

• ServerManager.stopService()

The caller can also choose to take advantage of the Production and Imaging server Status and Control
protocols. The Status and Control protocols allow the caller to request and receive server status, server
parameters, current orders in process, etc. The protocols also allow the caller to set server parameters,
acknowledge server dialogs, control server state, etc. For more information about the Production and Imaging
server protocols, refer to ‘Server status and control’ on page Error! Bookmark not defined..

The Status and Control protocols are accessed through the ServerManager.executeServerRequest() method.
This method accepts an XML string conforming to one of the following DTDs:

• ProductionServerRequest DTD

• ImageServerRequest DTD

The ServerManager. executeServerRequest() method returns an XML string conforming to one of the
following DTDs:

• ProductionServerReply DTD

• ImageServerReply DTD

The methods described above are synchronous.

 Tip: Use the SystemManager.setSynchronousTimeout() method to change the timeout value of all the
synchronous methods in the Client API.

Sample Code

Server Methods using .NET with C#
// Start/Stop/Restart services.

// Start Production Service on the local computer.

CServerManager.GetInstance().StartService(‘‘computer1’’,

CSystemManager.PRODUCTION_SERVER_TYPE);

// Stop Imaging Service on the local computer.

CServerManager.GetInstance().StopService(‘‘computer1’’,

CSystemManager.IMAGE_SERVER_TYPE);

// Restart Messaging Service on the local computer.

// NOTE: This will break the current Messaging Server(eMS) connection.

CServerManager.GetInstance().RestartService(‘‘computer1’’,

CSystemManager.MESSAGING_SERVER_TYPE);

// Execute Server Request.

// Create a request XML string conforming to either the
// ProductionServerRequest dtd or ImageServerRequest dtd.

String request = CreateServerRequest();

Server Management

// Call the server to execute the request. Get back a reply XML string

// conforming to either the ProductionServerReply dtd or
ImageServerReply
// dtd.

String reply =
CServerManager.GetInstance().ExecuteServerRequest(‘‘computer1_PS01’’,

request);

// Parse the reply using any XML parser.

ParseServerReply(reply);

Server Methods using Java
// Start/Stop/Restart services.

// Start production service on the local computer.

ServerManager.getInstance().startService(‘‘computer1’’,

SystemManager.PRODUCTION_SERVER_TYPE);

// Stop Imaging Service on the local computer.

ServerManager.getInstance().stopService(‘‘computer1’’,

SystemManager.IMAGE_SERVER_TYPE);

// Restart Messaging Service on the local computer.

// NOTE: This will break the current Messaging Server(eMS) connection.

ServerManager.getInstance().restartService(‘‘computer1’’,

SystemManager.MESSAGING_SERVER_TYPE);

// Execute Server Request.

// Create a request XML string conforming to either

// the ProductionServerRequest dtd or ImageServerRequest dtd.

String request = createServerRequest();

// Call the server to execute the request. Get back a reply XML

// string conforming to either the ProductionServerReply dtd or

// ImageServerReply dtd.

String reply =
ServerManager.getInstance().executeServerRequest(‘‘computer1_PS01’’, request);

// Parse the reply using any XML parser.

parseServerReply(reply);

110700_L 27

Server Methods using C++
// Start/Stop/Restart services.

// Start Production Service on the local computer.

ServerManager::getInstance()->startService(‘‘computer1’’,

SystemManager::PRODUCTION_SERVER_TYPE);

// Stop Imaging Service on the local computer.

ServerManager::getInstance()->stopService(‘‘computer1’’,

SystemManager::IMAGE_SERVER_TYPE);

// Restart Messaging Service on the local computer.

// NOTE: This will break the current Messaging Server(eMS) connection.

ServerManager::getInstance()->restartService(‘‘computer1’’,
SystemManager::MESSAGING_SERVER_TYPE);

// Execute Server Request.

// Create a request XML string conforming to either the

// ProductionServerRequest dtd or ImageServerRequest dtd.

std::string request = createServerRequest();

// Call the server to execute the request. Get back a reply XML string

// conforming to either the ProductionServerReply dtd or

// ImageServerReply dtd.

std::string reply =

ServerManager::getInstance()->executeServerRequest(‘‘computer1_PS01’’,
request.c_str());

// Parse the reply using any XML parser.

parseServerReply(reply);

Server Methods using C
/* Execute Server Request. */

/* Create a request XML string conforming to either the

ProductionServerRequest dtd or ImageServerRequest dtd.*/

LPTSTR request = createServerRequest();

/* Call the server to execute the request. Get back a reply XML string
conforming to either the ProductionServerReply dtd or ImageServerReply
dtd.*/

LPTSTR reply = RCA_executeServerRequest(‘‘computer1_PS01’’, request);

/* Parse the reply using any XML parser. */

parseServerReply(reply);

Server Management

/* Remove returned reply. */

RCA_removeServerResponse(reply);

Server Methods using VB 6

. Note: Rimage recommends the use of the .NET API for VB.NET.
‘ Execute Server Request.

‘ Declare the functions.

Public Declare Function RCA_executeServerRequestBstr Lib
"RmClient_9_0_n_8.dll"_

(ByVal server As String,_

ByVal request As String,_

ByVal responseCallback As Long) As Integer

‘ Declare callback functions.

Public Function responseCallback(ByVal response As String) As Long

Debug.Print "Server response is " & response

End Function

‘ Call a synchronous method.

ret = RCA_executeServerRequestBstr(‘‘computer1_PS01’’, request, AddressOf
serverActiveCallback)

110700_L 29

Order Management
A client application typically completes the following steps to connect to the Messaging Server and
then submit and manage orders. Refer to this process when using the Rimage client API to develop a
client application to the Rimage Publishing system:

Application Programming Sequence
0. Application startup

⇓
1.Connect with Messaging Server

⇓
2.Create XML string

⇓
3.Set up OrderDescription

(optional)

⇓
4.Submit ImageOrder

⇓
5.Listen for ImageOrder Status

⇓
6.Submit ProductionOrder

⇓
7.Listen for ProductionOrder Status

⇓
Repeat steps 2 through 7 as many times as needed

⇓
8.Application shutdown

⇓
9.Stop Listeners

⇓

10.Disconnect from Messaging Server

. Note: An additional step, Recovering Orders, may be required after reconnecting to Messaging
Server (eMS) if your client application shut down before order(s) were completed, and you used
OrderManager.submitDurableOrder() to submit the order(s). If this is the case, you can recover
order statuses that have not yet been received.

Submit Orders
After you are connected to the Rimage system you are free to begin submitting orders. You can submit one or
more orders to either Production Server or Imaging Server.

• Use the OrderManager class to submit orders. Only one OrderManager object per application is required.
Either Production or Imaging orders can be submitted by reusing a single OrderManager object.

• Use the OrderManager.getInstance() static method to create a single, internal object to use for
submitting, canceling, removing, and recovering orders.

Order Management

When you submit an order you can also provide a listener object to receive periodic status messages for that
order. You can create a separate listener object for each order or create a single listener object to manage all
the orders your application submits.

Order Management Methods
One of the following methods is called:

• OrderManager.submitOrder(XMLOrder, OrderStatusListener) returns an OrderDescription object. This
method returns immediately, it does not wait while the order is processed and completed.

• OrderManager.submitDurableOrder(XMLOrder, OrderStatusListener) returns an OrderDescription
object.

• OrderManager.submitOrder(OrderDescription, XMLOrder, OrderStatusListener)

• OrderManager.submitDurableOrder(OrderDescription, XMLOrder, OrderStatusListener)

. Note: Rimage recommends using one of the first two signatures to submit orders.

The first two methods [OrderManager.submitOrder(XMLOrder, OrderStatusListener) and
OrderManager.submitDurableOrder(XMLOrder, OrderStatusListener)] are overloaded to contain two
parameters.

The last two methods [OrderManager.submitOrder(OrderDescription, XMLOrder, OrderStatusListener) and
OrderManager.submitDurableOrder(OrderDescription, XMLOrder, OrderStatusListener)] are overloaded to
contain three parameters.

It is completely up to the user of this API which signatures to use. The last two methods require the caller to
build the OrderDescription object, which in turn requires its values to match values in the XML order. The first
two methods do not place that burden on the API user, but use a little more resources to parse the order.

OrderDescription Parameter

. Note: The OrderStatusListener parameter has been deprecated for the last two methods.

The first required parameter is an OrderDescription, which is an object containing summary information for
the order.

XMLOrder Parameter
The XMLOrder parameter is the order itself represented in an XML string. This XML document conforms to
either ProductionOrder.DTD or ImageOrder.DTD.

OrderStatusListener
The third parameter, OrderStatusListener is optional. This allows the caller to listen for the status information
on the order just submitted. If this parameter is omitted (or is null), the order is still submitted, but status is
not propagated back to the client.

The durable versions of these methods allow for recovery of an order’s statuses in the event of a client
application shutdown before an order is completed. If this is the case, then calling
OrderManager.recoverOrder() in combination with OrderManager.receiveRecoveredStatuses() during
application restart recovers all the missed order statuses.

110700_L 31

OrderDescription
The OrderManager class has two signatures for each of the submitOrder() and submitDurableOrder()
methods:

1. A signature that takes an OrderDescription object as well as the XML order string as parameters.

2. A signature that takes only the XML order string as a parameter and returns a reference to an
OrderDescription object.

. Note: Rimage recommends option 2. This is a simpler call to make for the caller, because the caller
doesn’t have to create an OrderDescription object before the method call. However in some
circumstances, clients require creation of an OrderDescription object prior to the call.

When an order is submitted to the system with an OrderDescription object, the values in the OrderDescription
must match the values in the XML order itself. This section describes how data in the XML order document is
related to the data in the OrderDescription object. This section does not apply if you are using the methods
that return these objects.

. Note: All values are case sensitive.

OrderDescription Object as a Return Value
If the OrderDescription object is not one of the parameters, it is derived from the XML order string and
returned to the caller. This object should be used in all subsequent OrderManager method calls related to this
order.

. Note: In a language like C++, the caller is responsible for deleting the OrderDescription object by calling
OrderManager::removeOrderDescription() after it is no longer needed. In a language like Java, the
garbage collector deletes the object.

There are two types of OrderDescription objects that you actually use:
1. ImageOrderDescription for imaging orders.

2. ProductionOrderDescription for production orders.

Example 1:
OrderManager.getInstance().submitDurableOrder(orderDesc, XMLOrder String,
orderStatusListener)

Example 2:
orderDesc = OrderManager.getInstance().submitDurableOrder(XMLOrder String,

orderStatusListener);

Cancel an Order in Process
While the order is in process, the user can cancel the order. There are two options for canceling an order in
process:

1. OrderManager.cancelPendingOrder(OrderDescription)

2. OrderManager.cancelOrder(OrderDescription)

The OrderManager.cancelPendingOrder() method tries to remove a pending order from a cluster. If the server
has not picked up the order for processing, this method will succeed.

. Note: Remember to use the same OrderDescription object to cancel an order in process that was used to
submit the order.

Order Management

The OrderManager.cancelOrder() method first tries to remove a pending order – an order that is still waiting
to be processed. If the pending order cannot be removed, a cancel request is sent to the server that is
processing the order, and return false to the caller. The server attempts to cancel the processing of the order
and send an appropriate status, which the client receives via the OrderStatusListener.onStatus() method.

Example: OrderManager.getInstance().cancelOrder(orderDescription,true);

. Note: If the OrderManager.cancelOrder() method returns true, the order has been removed from the
cluster because no server has begun work on it. If OrderManager.cancelOrder() method returns false,
then you have to wait for a status message from either the Imaging Server or the Production Server that is
currently processing the order. The OrderManager.cancelOrder() method sends the cancel request to the
appropriate Imaging Server or Production Server.

After the order has been processed, failed, or canceled, the user is required to call
OrderManager.stopListeningForOrder() method. This stops listening for the order status related to this order
only – all other submitted orders are not affected.

Example: OrderManager.getInstance().stopListeningForOrder(orderDescription);

. Note: You must call stopListeningForOrder for a particular Order ID before you can reuse that Order ID
since the system uses Order ID as a means of directing statuses for the order. Calling the
OrderManager.stopListeningForOrder() method effectively tells the system that the client is finished with
this order. The final order statuses returned are COMPLETED, FAILED, or CANCELED.

Recover Orders

. Note: Order recovery should be planned during the design of the application. If order recovery is
required, then only the OrderManager.submitDurableOrder() method should be used to submit orders.

There are cases when a client program crashes or is shut down before all orders are finished processing. The
next time the client program starts up it should call OrderManager.recoverOrder(OrderDescription,
OrderStatusListener) for each order previously submitted with OrderManager.submitDurableOrder() method.
After OrderManager.recoverOrder() has been called for all orders to be recovered,
OrderManager.receiveRecoveredStatuses() must be called. This allows the caller to receive order statuses
while the client application is down.

Example:
 OrderManager.getInstance().recoverOrder(orderDescription,
 orderStatusListener); OrderManager.getInstance().receiveRecoveredStatuses();

OrderDescription Base Class
Elements and attributes that are common to ProductionOrder and ImageOrder are represented in the
OrderDescription base class. The following applies to both ProductionOrder and ImageOrder.

OrderDescription
AttributeElement

XML Attribute

OrderDescription.setOrderId() Set to the “OrderId” attribute value of ProductionOrder or ImageOrder
element.

OrderDescription.setClientId() Set to the "ClientId" attribute value of ProductionOrder or ImageOrder
element.

OrderDescription.setOriginator() Set to the "Originator" attribute value of ProductionOrder or
ImageOrder element.

OrderDescription.setPriority() Set to the "Priority" attribute value of ProductionOrder or ImageOrder
element.

110700_L 33

OrderDescription
AttributeElement

XML Attribute

OrderDescription.setTargetCluster() Set to the "Cluster" attribute of Target element.

OrderDescription.setTargetServer() Set to the "Server" attribute of Target element.

ImageOrderDescription Sub Class
The Image order description requires 3 set parameter methods to be called. Most of the parameters have
defaults, but you still must make sure that these parameters have identical values in the XML order document.
The required Image order set parameters are:

• OrderID, ClientID, Originator – no default values assigned

• Priority, TargetCluster, TargetServer – default values assigned

. Note: Currently, there is no additional data in an ImageOrderDescription other than what is in the base
class.

ProductionOrderDescription Sub Class
The Production order description requires 13 set parameter methods to be called. Most of the parameters
have defaults, but you still must make sure that these parameters have identical values in the XML order
document. The required Production order set parameters are:

• OrderID, ClientID, Originator - no default values assigned

• TargetCluster, Action, MediaType, MediaSize, TargetLine, InOutInputBin, OutputMailSlot, Copies,
TargetServer, and Priority – default values assigned

Submitting a ProductionOrder requires information in addition to what is already contained in the
OrderDescription base class.

OrderDescription AttributeElement XML Attribute

ProductionOrderDescription.setCopies() Set to the "Copies" attribute value of ProductionOrder
element.

ProductionOrderDescription.setTargetLine() Set to the "Line" attribute of Target element.

ProductionOrderDescription.setMediaType() Set to the "Type" attribute of Media element.

ProductionOrderDescription.setMediaSize() Set to the "Size" attribute of Media element.

ProductionOrderDescription.setInOutInputBin() Set to the "InputBin" attribute of InOut element.

ProductionOrderDescription.setOutputMailslot () Set to the "OutputMailslot" attribute of InOut element.

Order Management

OrderDescription AttributeElement XML Attribute

ProductionOrderDescription.setAction() Set to the type of the first action found in a
ProductionOrder XML document.

• If first action element is Record – setAction() to
“Record”.

• If first action element is Read – setAction() to
“Read”.

• If first action element is Label – setAction() to
“Label”.

• If first action element is Collate – setAction() to
“Collate”.

• If first action element is Copy – setAction() to
“Copy”.

• If first action element is Destroy – setAction() to
“Destroy”.

ProductionOrderDescription.setLabelPresent() Set to boolean “true” or “false” to signify if the disc
is to be printed on.

Streaming
As of PSS 7.2 Production Server (ePS) is able to stream image data (image file or a Rimage PowerImage file)
directly from the computer hosting the Imaging Server (eIS).

The client application programmer needs to add information to the ImageOrder and ProductionOrder XML
orders to facilitate this process.

Changes to ImageOrder

Set the “Output” element’s “Type” attribute to “PowerImage”. This ensures the fastest Image file creation
possible. PowerImage file is resolved during the streaming process to the Production Server.

. Note: This value can be set to “Normal” however optimal performance will not be achieved.

Changes to ProductionOrder

• Set the “ProductionOrder” element’s “ImagerHost” attribute to the name of the computer hosting the
Imaging Server which produced the image.

• Set the “ProductionOrder” element’s “ExternalImager” attribute to “true” since all imaging is done by a
component other than the client application.

• Set the “ProductionOrder” element’s “LogonId” attribute to the currently logged in Windows User’s ID.

. Note: If the above information is not entered in the ProductionOrder, the order is processed without
streaming and performance may not be optimal.

110700_L 35

Spanning
As of PSS 7.3 Rimage software is able to record a single set of data on multiple discs, producing a spanned disc
set.

The client application programmer needs to add information to the ImageOrder and ProductionOrder XML
orders to facilitate this process. There are also additional XML orders involved in spanning: OrderSet and
OrderSetStatus.

Process Flow of a Spanned Disc Set

1. An ImageOrder is submitted to the Imaging Server specifying whether spanning is allowed.

2. Imaging Server produces multiple Image files for the specified data. As the Image file is being written to
disc, the Imaging Server sends out ImageOrderStatus XML to the client. The order status specifies the
total number of volumes (or discs) involved in this order, the current volume being worked on (1, 2, n),
and the name of the current volume Image file.

. Note: The size of each Image file in the set is determined by the Image size specified in the
ImageOrder, which relates to the Media (CDR, DVDR, etc.) for this spanned disc set.

3. As soon as the first ImageOrderStatus comes back with the information on the total number of volumes,
an OrderSet XML can be created and submitted through OrderManager just like any other order. The
OrderSet includes a list of ProductionOrders that are involved in the creation of this spanned disc set.

4. Once an Image file for one of the volumes in the set is completed, a ProductionOrder for this Image file
can be submitted. This pattern is repeated for each volume in the set.

. Note:

• Each ProductionOrder in the spanned disc set specifies one of the Image files as Data Tracks.
Therefore there are as many ProductionOrders as there are image files in the set.

• Production Server makes sure the discs in the spanned disc set are produced in the correct order
- 1, then 2, etc.

5. Production Server sends out statuses for the spanned disc set as a whole (OrderSetStatus XML) as well as
statuses for the individual ProductionOrders (ProductionOrderStatus XML).

6. Once the entire spanned disc set is produced, cancelled, or failed, the client application needs to call
OrderManager.stopListeningForOrder() for every order involved in the set: ImagerOrder, OrderSet, and
multiple ProductionOrders.

Changes to ImageOrder

Set the “Output” element’s “PowerSpan” attribute to “true”. This tells the Imaging Server that spanning is
allowed.

Interpreting ImageOrderStatus

There are three new IMPLIED fields in the Status element related to a spanned disc set. These fields tell the
client application how many volumes are in the set, which volume is being worked on now, etc. The new fields
are:

• “SpanTotalVolumes” – indicates the number of volumes in the spanned disc set.

• “SpanVolume” – inidicates the volume eIS is currently working on. Numbering starts with “1”.

• “SpanVolumeName” – indicates the file name of the volume eIS is currently working on. This is the
filename to be specified in the “WriteTrack” element’s “Filename” attribute of the ProductionOrder.

Order Management

OrderSet (New)

• Fill the attributes of the “OrderSet” element with the same information normally specified for any type of
order.

• Add an “OrderReference” element for each ProductionOrder in this spanned disc set.

. Note: Typical naming convention for orders in a spanned disc set is: <orderSetId> for OrderSet and
<orderSetId>_000x for each ProductionOrder in the spanned disc set.

Fill the “ProductionOrderSet” element with the same information normally specified for a ProductionOrder.
This element exists to facilitate Production Server allocation of resources.

Changes to ProductionOrder

• Set the “ProductionOrder” element’s “ReferencedSet” attribute to the order ID of the OrderSet submitted
previously.

• Set the “WriteTrack” element’s “Filename” attribute to one of the Image files returned in the
ImageOrderStatus XML.

• The rest of the ProductionOrder remains the same.

Order Management Sample Code
Order Management using .NET with C#

// Submit Production order.

 // Image order management is almost identical to Production order

 // management and is not covered here.

// Create the XML Production order document using any of the available

// XML parsers.

String xmlOrder = createProductionOrder();

// Submit order and get an OrderDescription object back.

// If recovery is not required, use a submitOrder() signature.

CProductionOrderDescription orderDescription =
COrderManager.GetInstance().SubmitDurableOrder(xmlOrder, orderListener);

// OR

// Create a ProductionOrderDescription object. Most of the parameters are

// defaulted, but you have to make sure that these parameters have

// identical values in the XML order document.

CProductionOrderDescription orderDescription = new
CProductionOrderDescription();

orderDescription.OrderId = ‘‘ProductionOrder01’’;

orderDescription.ClientId = "PO_Client_ID";

orderDescription.Originator = "PO_ORIGINATOR";

// Class that will receive order status notifications.

public class MyOrderListener : IOrderStatusListener

{

 public void OnStatus(String xmlOrderStatus)

 {

110700_L 37

 // Check for the state of your order here, using an XML parser.

 // This code will run in a client API managed thread different from

 // the thread that submitted the order.

 ...

 Console.WriteLine("--- Order status");

 Console.WriteLine(xmlOrderStatus);

 }

}

// Submit the Production order.

// If recovery is not required, use submitOrder() signature.

MyOrderListener orderListener = new MyOrderListener();

COrderManager.GetInstance().SubmitDurableOrder(orderDescription, xmlOrder,
orderListener);

// Order is being processed by the server and MyOrderListener is

// receiving statuses.

...

// If we want to cancel the order for some reason.

// If the order is cancelled by the server, the next status received

// by MyOrderListener will be CANCELLED.

COrderManager.GetInstance().CancelOrder(orderDescription);

// Stop listening for order status.

// Final order status received by MyOrderListener is either

// COMPLETED, FAILED, or CANCELLED.

// We need to stop listening for this order’s status.

COrderManager.GetInstance().StopListeningForOrder(orderDescription, true);

// Recover orders.

// If your client application shuts down before order(s) were completed,

// and you used OrderManager.submitDurableOrder() to submit the order(s),

// then you can recover order statuses that were not received previously.

// The sequence for recovering orders is as follows:

// 1. Call OrderManager.RecoverOrder() for each order to be recovered.

// 2. Call OrderManager.ReceiveRecoveredStatuses() to initiate order

// recovery and to start receiving order statuses.

// Using the same mechanisms to create ProductionOrderDescription and

// MyOrderListener as in the above section, call the following for each

// order you want to recover.

CProductionOrderDescription orderDescription = new
CProductionOrderDescription();

orderDescription.OrderId = ‘‘TestOrder’’;

orderDescription.ClientId = ‘‘TESTCLIENT’’;

orderDescription.Originator = ‘‘RimageSample’’;

MyOrderListener orderListener = new MyOrderListener();

COrderManager.GetInstance().RecoverOrder(orderDescription, orderListener);

// Once all the orders have been recovered, call the following to start

Order Management

// receiving order statuses.

COrderManager.GetInstance().ReceiveRecoveredStatuses();

Order Management using Java
// Submit Production order.

// Image order management is almost identical to Production order

// management, and is not covered here.

// Create the XML Production order document using any of the available

// XML parsers.

String xmlOrder = createProductionOrder(…);

// Submit order and get an OrderDescription object back.

// If recovery is not required, use a submitOrder() signature.

ProductionOrderDescription orderDescription =
OrderManager.getInstance().submitDurableOrder(xmlOrder, orderListener);

// OR

// Create a ProductionOrderDescription object. Most of the parameters are

// defaulted, but you have to make sure that these parameters have

// identical values in the XML order document.

ProductionOrderDescription orderDescription = new ProductionOrderDescription();

orderDescription.setOrderId(‘‘ProductionOrder01’’);

orderDescription.setClientId("PO_Client_ID");

orderDescription.setOriginator("PO_ORIGINATOR")

// Class that will receive order status notifications

public class MyOrderListener implements OrderStatusListener

{

public void onStatus(String xmlOrderStatus)

{

 // Check for the state of your order here, using an XML parser.

 // This code will run in a client API managed thread different from

 // the thread that submitted the order.

 ...
 System.out.println("\n--- Order status");

 System.out.println(xmlOrderStatus);

}

}

// Submit the Production order.

// If recovery is not required, use a submitOrder() signature.

MyOrderListener orderListener = new MyOrderListener();

OrderManager.getInstance().submitDurableOrder(orderDescription, xmlOrder,
orderListener);

// Order is being processed by the server and MyOrderListener is

// receiving statuses.

// Cancel order.

// If we want to cancel the order for some reason.

// If the order is cancelled by the server, the next status received

110700_L 39

// by MyOrderListener will be CANCELLED.

OrderManager.getInstance().cancelOrder(orderDescription);

// Stop listening for order status.

// Final order status received by MyOrderListener is either

// COMPLETED, FAILED, or CANCELLED.

// We need to stop listening for this order’s status.

OrderManager.getInstance().stopListeningForOrder(orderDescription);

// Recover orders

// If your client application shuts down before order(s) were completed,

// and you used OrderManager.submitDurableOrder() to submit the order(s),

// then you can recover order statuses that were not received previously.

// The sequence for recovering orders is as follows:

// 1. Call OrderManager.recoverOrder() for each order to be recovered.

// 2. Call OrderManager.receiveRecoveredStatuses() to initiate order

// recovery and to start receiving order statuses.

// Using the same mechanisms to create ProductionOrderDescription and

// MyOrderListener as in the above section, call the following for each

// order you want to recover.

ProductionOrderDescription orderDescription;

orderDescription.setOrderId(‘‘ProductionOrder01’’);

orderDescription.setTargetCluster(‘‘DefaultProductionCluster’’);

MyOrderListener orderListener = new MyOrderListener();

OrderManager.getInstance().recoverOrder(orderDescription, orderListener);

// Once all the orders have been recovered, call the following to start

// receiving order statuses.

OrderManager.getInstance().receiveRecoveredStatuses();

Order Management using C++
// Submit Production order.

// Image order management is almost identical to Production order

// management, and is not covered here.

// Create the XML Production order document using any of the available

// XML parsers.

LPCTSTR xmlOrder = createProductionOrder(…);

// Submit order and get an OrderDescription object back.

// If recovery is not required, use submitOrder() signature.

ProductionOrderDescription* orderDescription =

OrderManager::getInstance()->submitDurableOrder(xmlOrder, &orderListener);

// OR

// Create a ProductionOrderDescription object. Most of the parameters are

// defaulted, but you have to make sure that these parameters have

// identical values in the XML order document.

ProductionOrderDescription orderDescription;

orderDescription.setOrderId(‘‘ProductionOrder01’’);

orderDescription.setClientId("PO_Client_ID");

Order Management

orderDescription.setOriginator("PO_ORIGINATOR")

orderDescription.setTargetCluster(‘‘DefaultProductionCluster’’);

// Class that will receive order status notifications.

class MyOrderListener : public OrderStatusListener

{

 void onStatus(LPCTSTR xmlOrderStatus);

};

void MyOrderListener::onStatus(LPCTSTR xmlOrderStatus)

{

 // Check for the state of your order here, using an XML parser.

 // This code will run in a client API managed thread different from

 // the thread that submitted the order.

 .
printf("\n--- Order status");

 printf(xmlOrderStatus);

}

// Submit the Production order.

// If recovery is not required, use submitOrder() signature.

MyOrderListener orderListener;

OrderManager::getInstance()->submitDurableOrder(&orderDescription, xmlOrder,
&orderListener);

// Order is being processed by the server and MyOrderListener is
// receiving statuses.

.

.

// Cancel order.

// If we want to cancel the order for some reason.

// If the order is cancelled by the server, the next status received

// by MyOrderListener will be CANCELLED.

OrderManager::getInstance()->cancelOrder(&orderDescription);

// Stop listening for order status.

// Order is either COMPLETED, FAILED, or CANCELLED

// We need to stop listening for this order’s status

OrderManager::getInstance()->stopListeningForOrder(&orderDescription) ;

// If OrderDescription is returned from submitOrder()

OrderManager::getInstance()->removeOrderDescription(orderDescription);

// Recover orders.

// If your client application shuts down before order(s) were completed,

// and you used OrderManager.submitDurableOrder() to submit the order(s),

// then you can recover order statuses that were not received previously.

// The sequence for recovering orders is as follows:

// 1. Call OrderManager::recoverOrder() for all the orders to be recovered.

110700_L 41

// 2. Call OrderManager::receiveRecoveredStatuses() to initiate order

// recovery and to start receiving order statuses.

// Using the same mechanisms to create ProductionOrderDescription and

// MyOrderListener as in the above section, call the following for each

// order you want to recover.

ProductionOrderDescription orderDescription;

orderDescription.setOrderId(‘‘ProductionOrder01’’);

orderDescription.setTargetCluster(‘‘DefaultProductionCluster’’);

MyOrderListener orderListener;

OrderManager::getInstance()->recoverOrder(&orderDescription, &orderListener);

// After recoverOrder() has been called for each order to be recovered,

// call the following to initiate recovery for all orders and to start

// receiving order statuses.

OrderManager::getInstance()->receiveRecoveredStatuses();

Order Management using C
/* Submit Production order.*/

/* Image order management is almost identical to Production order management,
and is not covered here.*/

/* Create the XML Production order document using any of the available XML
parsers.*/

LPCTSTR xmlOrder = createProductionOrder();

/* Allocate memory for the structure.*/

RCA_production_order_description rcaPOD;

/* Callback function that will receive order status notifications.*/

void CALLBACK orderStatusCallback(LPTSTR xmlOrderStatus)

{

 /* Check for the state of your order here, using an XML parser.*/

 /* This code will run in a Client API managed thread different from

 the thread that submitted the order.*/

 .

 .
printf("\n--- Order status");

 printf(xmlOrderStatus);

}

/* Submit the Production order.*/

/* If recovery is not required, use submitOrder() signature.*/

/* rcaPOD is filled in with values from the order. Use it in all subsequent
calls related to this order.*/

RCA_submitDurableProductionOrderBstr(&rcaPOD, xmlOrder, orderStatusCallback);

/* Order is being processed by the server and orderStatusCallback is receiving
statuses */

.

.

/* Cancel order. */

Order Management

/* If we want to cancel the order for some reason. */

/* If the order is cancelled by the server, the next status received

by MyOrderListener will be CANCELLED. */

RCA_cancelProductionOrder(&rcaPOD, true);

/* Stop listening for order status */

/* Order is either COMPLETED, FAILED, or CANCELLED.

/* We need to stop listening for this order’s status */

RCA_stopListeningForProductionOrder(&rcaPOD);

/* Recover orders */

/* If your client application shut down before order(s) were completed,

and you used OrderManager.submitDurableOrder() to submit the order(s),

then you can recover order statuses that were not received previously.*/

/* The sequence for recovering orders is as follows: */

/* 1. Call RCA_recoverProductionOrder() or RCA_recoverImageOrder() for each
order to be recovered. */

/* 2. Call RCA_receiveRecoveredStatuses() to initiate order recovery and to
start receiving order statuses.*/

/* Using the same mechanisms to create RCA_production_order_description and
callback function as in the above section, call the following for each order
you want to recover.*/

RCA_production_order_description rcaPOD;

rcaPOD.orderId = malloc(128);

rcaPOD.targetCluster = malloc(128);
strcpy(rcaPOD.orderId, ‘‘ProductionOrder1’’);

strcpy(rcaPOD.targetCluster, ‘‘DefaultProductionCluster’’);

RCA_recoverProductionOrder(&rcaPOD, orderStatusCallback);

/* Once all the orders have been recovered, call the following to start
receiving order statuses.*/

RCA_receiveRecoveredStatuses();

/* Free order description memory.*/

free(rcaPOD.orderId);

free(rcaPOD.targetCluster);

Order Management using VB 6

. Note: Rimage recommends the use of the .NET API for VB.NET.
‘ Submit Production order

‘ Image order management is almost identical to Production order
‘ management, and is not covered here.

‘ Declare the structure

Public Type RCA_production_order_description

 orderId As String * 128 ' This field cannot be NULL

 clientId As String * 128 ' This field is optional and can be NULL

110700_L 43

 originator As String * 128 ' This field is optional and can be NULL

 targetCluster As String * 128 ' This field cannot be NULL

 targetServer As String * 128 ' This field is optional, if null then any

 ' server in the cluster will process this
order

 priority As String * 32 ' Default for this field is
PRIORITY_MEDIUM

 action As String * 32 ' Default for this field is ACTION_RECORD

 mediaType As String * 32 ' Default for this field is MT_CDR

 mediaSize As String * 32 ' Default for this field is MS_120

 targetLine As String * 32 ' Default for this field is TL_ANY

 copies As String * 32 ' Default for this field is 1

 inOutInputBin As String * 32 ' Default for this field is IOB_ANY

 outputMailslot As String * 32 ' Default for this field is 0

End Type

‘ Declare the functions

Public Declare Function RCA_submitProductionOrderBstr Lib
"RmClient_9_0_n_8.dll" _

 (ByRef orderDesc As RCA_production_order_description, _

 ByVal xmlOrder As String, _

 ByVal orderStatusCallback As Long) As Integer

Public Declare Function RCA_cancelProductionOrder Lib "RmClient_9_0_n_8.dll" _

 (ByRef orderDesc As RCA_production_order_description, _

 ByVal abortCurrent As Boolean) As Integer

Public Declare Function RCA_stopListeningForProductionOrder Lib
"RmClient_9_0_n_8.dll" _

 (ByRef orderDesc As RCA_production_order_description) As Integer

‘ Declare callback function for order statuses

Public Function orderStatusCallback(ByVal orderStatus As String) As Long

 'On Error Resume Next

 Debug.Print orderStatus

 orderStatusCallback = 0

End Function

‘ Create a RCA_production_order_description structure.

‘ The values of this structure will be filled in during the

‘ submitProductionOrderBstr() call

Dim pod As RCA_production_order_description

Dim ret As Integer

Dim xmlProductionOrder As String

‘ Create the XML Production order document using any of the available XML
parsers.

Order Management

xmlProductionOrder = createProductionOrder(…)

‘ Submit the Production order.

‘ If recovery is not required, use submitOrder() signature

ret = RCA_submitProductionOrderBstr(pod, xmlProductionOrder, AddressOf
orderStatusCallback)

‘ Order is being processed by the server and orderStatusCallback is receiving
statuses

‘ Cancel order.

‘ If we want to cancel the order for some reason.

‘ If the order is cancelled by the server, the next status received

‘ by MyOrderListener will be CANCELLED.

ret = RCA_cancelProductionOrder(pod, True)

‘ Stop listening for order status

‘ Order is either COMPLETED, FAILED, or CANCELLED

‘ We need to stop listening for this order’s status

ret = RCA_stopListeningForProductionOrder(pod)

‘ Recover orders.

‘ If your client application shut down before order(s) were completed,

‘ and you used OrderManager.submitDurableOrder() to submit the order(s),

‘ then you can recover order statuses that were not received previously.

‘ The sequence for recovering orders is as follows:

‘ 1. Call RCA_recoverProductionOrderBstr() or RCA_recoverImageOrderBstr() for
each order to be recovered.

‘ 2. Call RCA_receiveRecoveredStatuses() to initiate order recovery and to
start receiving order statuses.

‘ Declare the function

Public Declare Function RCA_recoverProductionOrderBstr Lib
"RmClient_9_0_n_8.dll" _

 (ByRef orderDesc As RCA_production_order_description, _

 ByVal callback As Long) As Integer

Public Declare Function RCA_receiveRecoveredStatuses Lib "RmClient_9_0_n_8.dll"
() As Integer

‘ Using the same mechanisms to create RCA_production_order_description and
callback function as in the above section, call the following for each order
you want to recover.

Dim pod As RCA_production_order_description

Dim ret As Integer

pod.orderId = "ProductionOrder001_VB"

pod.targetCluster = "DefaultProductionCluster"

ret = RCA_recoverProductionOrderBstr(&rcaPOD, orderStatusCallback)

‘ Once all the orders have been recovered, call the following to start
receiving order statuses.

ret = RCA_receiveRecoveredStatuses()

110700_L 45

Server Status and Control Protocol

Server Status and Control Protocol
This section describes the protocol used to communicate with Production Server to obtain status information,
modify parameter settings, control orders, and carry out Production Server operations. These operations
include sending a response to any dialog that the Production Server may generate in the processing of orders.

This section also describes the protocol used to communicate with the Imaging Server to obtain status
information, modify parameter settings, control orders, and carry out Server operations.

The XML-based Production and Imaging server Status and Control protocols are a means for applications to do
any of the following:

• Get server status

• Get server parameters

• Set server parameters

. Note: Not all parameters are changeable via the Status and Control protocol. For example, the
ServerID is a read only parameter.

• Get a list of orders currently in process by a server

• Cancel or suspend a specific order

• Control a server state (Pause, Resume, Shut down, etc.)

The Server Status and Control protocol is realized through using the ServerManager.executeServerRequest
method in combination with the following DTDs:

• ProductionServerRequest DTD

• ProductionServerReply DTD

• ImageServerRequest DTD

• ImageServerReply DTD

Server Command Synchronization
There is a set of commands for the Production Server and a set for the Imaging server. There is no restriction
on which user may send commands. If a command requires a password, the encrypted password is included in
the request XML and is verified by the server before the command is run. These commands are described as
elements with supporting attributes in ProductionServerRequest and ImageServerRequest DTDs. Many
commands are identical for the two servers, i.e. Get server parameters. In these cases, the elements in the
two DTDs are the same. Most of the commands are synchronous. When a client makes a request, the
response from the Production or Imaging Server is typically immediate or takes place within a few seconds.

• ServerManager.executeServerRequest method returns an XML string that conforms to either the
ProductionServerReply or the ImageServerReply DTD. There is also a set of replies that are the same
between the two servers. In these cases, the elements in the two DTDs are the same.

• The FlashUpload command, which may take longer to complete, requires the client to wait until the
operation completes.

• The SystemManager.setSynchronousTimeout method is used to change the timeout value, the value is
given in milliseconds.

110700_L 47

• The PauseServer, ResumeServer, and StopServer operations are implemented as asynchronous
commands. The normal server response is immediate and the response message indicates that these
operations are in progress. Because these operations can take a while to complete, clients using this
server receive notification through ServerEventListener.onServerxxx() methods when the pause or
resume operation is complete. In the meantime, any user can make requests for Server status that return
the state of the Server. Because of the nature of the pause and resume operations, the Server locks out a
small number of commands until the pause or resume operation has completed. These commands are
also disabled when the Server is processing a StopServer request or during initialization in which the
Server is in the ‘Start Pending’ state.

The commands that are locked out during pause or resume operations are:

• CancelOrder

• ChangeOrder

• ResetInputBins

• EnableDevice

• SetParameter

• FlashUpload

• StopServer

Password Protection on Commands
Some server commands are password protected. Each Server has its own password to use any of the password
protected commands. When there is more than one Server in a configuration, the Servers can have the same
password or they can all be different. A password may consist of up to 20 characters. The default password is
a null password, meaning that it is not initially set and has a length of zero (or 0 characters). The protocol uses
the SetServerPassword command to permit a client application to set the password. When the Server
password is set, this password is required for performing protected operations on the Server.

When used in an XML message, passwords must be encoded. Clients that send passwords must encrypt the
password prior to sending it.

Production Server Commands
When Production Server processes either the EnableDevice or the ResetInputBins commands, Production
Server may send a completed response even though the operation on the device involved has not completed.
The device cannot accept another command unless it is ready, so there may be a delay before the next
operation begins.

For the Production Server to respond to any request, it must first be online (successfully connected to the
Messaging Server).

. Note: Typically, the Server is online before it has completely initialized, this may cause some commands
to return an error until the Server has completed initialization.

Server Status and Control Protocol

Command Summary

Command Description Needs Password Command Reply

GetServerStatus Gets information
about Server’s
operational state and
system settings

No Server Password Set = (True or
False)
Remaining days for trial use of a
feature returned.
Overall counts of produced discs
and rejected discs.
Command line switches that are
in use.

GetParameterSettings Gets list of
parameters and their
values

No Sends the contents of the
element
ProductionServerParameters in
the ProductionServerReply.dtd

GetOrderList Obtains a list of
currently running (or
suspended) orders on
the Server for all
users

No OrderState = IN_PROCESS or
CANCELLING
OrderStage = BUSY, WAITING,
RECORDING,PRINTING

CancelOrder Cancels an order Yes, if client updates
someone else’s order

ChangeOrder Suspends, resumes,
or changes quantity
of an order

Yes, if client updates
someone else’s order

SetDialogAction This command is used
to respond to either
an alert dialog or an
error dialog that is
posted by the
Production Server.

No COMPLETED

GetSessionLog Obtains a list of the
most recent log
messages posted by
the Server

No Returns most recent log
messages posted since startup
of the client, up to 200 entries.

ResetInputBins Causes Server to reset
input bins for a
specified autoloader
that has any bin set
up for both input and
output.

No COMPLETED

EnableDevice Re-enables a
autoloader, recorder,
or printer

Yes COMPLETED

SetParameter Modifies one or more
parameter settings

Yes Returns an error for invalid
requests.

PauseServer Stops order scanning;
Pause mode for

Yes IN_PROCESS

110700_L 49

Command Description Needs Password Command Reply

Service

ResumeServer Starts order scanning;
Run mode for Service

Yes IN_PROCESS

StopServer Stops order scanning,
stops order
processing, and shuts
down Server. In
process orders are
canceled.

Yes

FlashUpload Uploads firmware to
autoloader,
recorders, or printers

Yes

SetServerPassword Initially sets, changes,
or resets the Server
password

Only to change or reset
password

VerifyServerPassword Confirms if the
current password
provided is still valid
or not.

No

Command Reply
All command replies contain the following information:

• ServerId – Unique ID assigned to the Production Server. This has the format <computer_name>_<base
id>. The <base id> is the name assigned to the Server containing up to 4 characters.

• ClientID – Name of the client user that sent the original command. Each client ID is unique on the
Messaging Server.

• CommandState – Refers to the state of the command at the time of the response. The only state that
indicates command success is the COMPLETED state. The FAILED state indicates that the request failed,
the command may or may not have run. The details of any failure are in the error code and message. If
the command or request is started but not immediately completed, the CommandState is IN_PROCESS.

• CommandErrorCode – A number ranging from 0 – 999 indicating the error status of the command. A
value of 0 is returned if the command has the COMPLETED state. The code has a non-zero value when the
state is FAILED.

• CommandErrorMessage – Text indicating what the error message is. It is present if the
CommandErrorCode is non-zero.

• ReplyTimestamp –Text in the form of “CCYY-MM_DD HH:MM:SS” indicating the time the Server
generated a reply.

• Automation – The state of Server operation.

Server Status and Control Protocol

Automation State Description

START_PENDING Server is in initialization.

RUNNING Server is scanning for orders and/or processing orders.

PAUSED Server is not scanning for new orders; it has suspended any orders that were
processing.

PAUSE_PENDING Server is not scanning for more orders; it is in the process of suspending any active
orders.

STOP_PENDING Server is not scanning for more orders; Recordings in process are being canceled; The
system is in the process of shutdown.

Command Details
This section discusses Production Server request commands and is intended to clarify some of the less obvious
details about data processed or returned by the Imaging Server.

• GetServerStatus – Obtains information about Server software settings and configuration.

GetServerStatus is used to obtain information about the software, how the software is configured to run,
and some configuration information. Most of the settings are not directly configurable by the client, but
some dynamic status information is available on the Server and attached devices. This command returns
overall counts of produced (good) discs and rejects. As an option, device status is available which contain
data on loader bin levels and printer disc cumulative throughput.

One item returned by this request is whether or not the Server password is set. When the server
password attribute is true, the Server requires a server password to be submitted with some commands.
When a password is not set, then a password is not used with any request.

One option available with this request is information pertaining to license activation. If a feature has a
license file but is not activated, the number of remaining days for trial use of the feature is returned.

A less-used option is to send a flag with this request to get the command line switches that are in use.
These switches are sometimes used by QA and development personnel doing diagnostic work on the
Server.

• GetParameterSettings – Obtains a complete list of parameters and their settings.

The Server replies by sending the contents of the element ‘ProductionServerParameters’ in the
ProductionServerReply.dtd.

• GetOrderList – Obtains a list of all currently running (or suspended) orders on the Server.

This command provides current data on all of the orders being processed by the Production Server. The
orders in the list are not in any particular sequence. The OrderID and ClientID for each order are returned.
These values are needed whenever making a request to cancel or to update an order.

Order State – If the Server has resources available to process an order, the normal state of the order is
’IN_PROCESS’. If an action is taken to cancel an order, the state remains as 'IN_PROCESS' but the extended
order stage (OrderStageEx) goes to CANCELLING. After the order has completed the cancellation process,
it is removed from the order list.

Order Stage – This attribute of an order indicates the predominant activity that best describes what is
happening with the order at the Server.

Two stages to note are:

110700_L 51

1. WAITING: means that the disc(s) are waiting for a physical resource on the autoloader before they
can go to the next stage. This may occur for an extended period if an order loses its resources due to
a hardware malfunction or during a crash recovery when there may be several orders running, but
not enough resources to run them all at once.

2. BUSY: usually means that the disc is in a transition from one stage to another (such as RECORDING to
PRINTING).

• CancelOrder – Cancels an active order.

This command allows a client to cancel an order that the client has submitted without a password. The
protocol allows the choice to either stop the recording immediately (AbortRecordingsInProcess = true), or
to stop after the current discs being recorded are finished (AbortRecordingsInProcess = false).

The Server checks if the client that is making the request matches the ClientID that is associated with the
order. If the clients do not match, then the Server verifies that the message contains the Server password
(provided this password has been set).

. Note: Both the OrderID and ClientID attributes are used to properly identify orders. This information
is obtainable with the GetOrderList command.

• ChangeOrder – Suspends, resumes, or changes quantity of an order.

When changing the number of discs to produce in an order, the requested number may be more or less
than the number in the order. However, the quantity specified must exceed the sum of the discs already
produced in the order plus the number of discs currently in recording (Discs (new quantity) > {Discs
completed + Discs recording}.)

The Server checks to see if the client that is making the request matches the ClientID that is associated
with the order. If the clients do not match, then the Server verifies that the message contains the Server
password (provided this password has been set).

. Note: Both the OrderID and ClientID attributes are used to properly identify orders, and this
information is obtainable with the GetOrderList command.

• SetDialogAction – Sends a selection a user has made to a dialog.

This command is used to respond to either an alert dialog or an error dialog that is posted by the
Production Server. There is no restriction on which client can respond. Normally, with an error dialog, the
condition must be corrected at the affected autoloader before answering the dialog. After the Server
receives this command, it returns the COMPLETED status and performs the specified action.

. Note: The completed status is simply the Server receiving a course of action, rather than a repeat of
the action that caused the error. If the course of action produces another error, then another dialog
is posted.

• GetSessionLog – Obtains a list of the most recent log messages posted by Server.

This request causes the Server to return its most recent messages (that it normally logs into a file) that
have been posted since startup to the client. Up to 200 entries may be returned. The client can specify a
value for the number of entries, but if the actual number is less than the value specified, then only the
actual log entries are returned (up to a maximum of 200).

Each log entry has a Timestamp and a MessageId associated with it. The timestamp has the format ”CCYY-
MM_DD HH:MM:SS”. The message ID is the numeric value that is assigned to the message. A value of zero
for the message ID indicates that the log entry is an informational message, although informational
messages can also have non-zero IDs.

Server Status and Control Protocol

• ResetInputBins – Causes the Server to perform the reset input bins operation on a specified autoloader.
This command applies to only autoloaders that have any bin configured for both input and output.

The bins on a specified autoloader are essentially reinitialized. It is recommended that the client
application confirm with the local operator that the bins have been emptied and refilled as required.
When the Server receives this request, it immediately proceeds with the reset operation regardless of the
state that the autoloader is in.

. Note: This command typically returns COMPLETED immediately, although the physical operation can
take a few seconds.

• EnableDevice – Enables a disabled autoloader, recorder, or printer.

This command allows a user to put a disabled autoloader, recorder, or printer back online. It is always
necessary to specify the number of the autoloader. The Server assigns numbers to autoloaders during
initialization. The first autoloader is numbered as 1. Recorder numbers are assigned by the Server and
refer to the physical locations of the recorders on the autoloader. Both recorders and printer are
numbered starting at 1.

. Note: This command typically returns COMPLETED immediately, although the physical operation can
take a measurable amount of time.

• SetParameter – Modifies one or more parameter settings.

This command allows a user to change Production Server settings. As viewed in the ‘Setting’ sub element
of the element SetParameter, a single command can be used to change multiple settings on the Server or
on one or more autoloaders that are connected. When a request is made to modify more than one
parameter setting, all of the requested settings must be valid for the request to be completed. If any of
the requested settings is invalid, the request returns an error, and no settings are changed.

• PauseServer – Stops order scanning and brings the Production Server to a Paused automation state.

The Server returns an immediate response. The CommandState normally is IN_PROCESS. Once the
command is started, the Server goes into the Pause Pending state until it reaches the Pause state. The
command fails if the Server is in either the Start Pending or Stop Pending state.

• ResumeServer – Resumes order scanning and brings the Production Server to a Running automation
state.

If any orders are suspended, the orders are resumed. The Server returns an immediate response. The
CommandState normally returns as IN_PROCESS. However, the Server normally should reach the running
state within a few seconds. The Server must already be in the Paused state for this command to succeed.

• StopServer – Shuts down the Server.

The Server shuts down when it receives this command. Any orders in process are canceled and no new
orders are picked up. The client has the option of aborting any recording in progress or allowing the
current discs in recording to finish.

• FlashUpload – Uploads the firmware to the autoloader, recorders, or printers.

No matter what type of device is specified for uploading flash firmware, the Server always attempts to
update all similar devices on a system. If the autoloader firmware is being uploaded, then all the
autoloaders that match the firmware can be updated. As with the EnableDevice command, the first
autoloader is numbered as 1.

Before running this command, the client application should ensure that the firmware file has been copied
to the Rimage system folder. The Production Server accesses the file using the full file path that is
specified in the request.

110700_L 53

. Note: The Server must be in a Paused state before this command can be run. This command can take
more than three minutes to complete. It does not return until the operation has succeeded or failed.
The client application should expect to wait until completion.

• SetServerPassword – Initially sets, changes, or resets the password of the Server.

Initially, the Server password is not set. This command allows any client to set the password so that the
Server must receive this password with any password-protected commands that follow. The fact that the
password is set on the Server is known by the response to the GetServerStatus command.

The Server password must be 0 to 20 characters in length. The encryption algorithm is provided on page
78.

• VerifyPassword – Checks to see if the entered password is correct.

This command is used by client applications to determine if a string of characters matches the Server’s
stored password.

Imaging Server Commands
Before the Imaging Server can respond to any request, it must be online. This means that it has completed its
initialization process and has successfully connected to the Messaging Server.

Command Summary

Command Description Needs
Password

GetServerStatus Obtains information about Server’s operational state and
system settings

No

GetParameterSettings Obtains list of parameters and their values No

GetOrderList Obtains the job order of the currently processing order, if
there is one

No

CancelOrder To cancel the current order Yes, if client
updates someone
else’s order

GetSessionLog Obtains a list of the most recent log messages posted by
Server

No

SetParameter Modifies one or more parameter settings Yes

PauseServer Stops order scanning; Pause mode for Service Yes

ResumeServer Starts order scanning; Run mode for Service Yes

StopServer Stops order scanning, stops order processing, and shuts
down Server

Yes

SetServerPassword Initially sets, changes, or resets the Server password Only to change or
reset password

VerifyServerPassword Used to confirm if the current password that was provided
is still valid or not

No

Server Status and Control Protocol

Command Reply
All responses contain the following information. See the DTD for the exact format.

• ServerId – Unique ID assigned to the Production Server. This has the format <computer_name>_<base
id>; the <base id> is the name up to 4 characters that is assigned to the Server. The Imaging Server uses
IS01 by default, but may be changed during installation.

• ClientID – The name of the client user that sent the original command. It is unique on the Messaging
Server.

• CommandState – The state of the command at the time of the response. The only states that indicates
command successes are the COMPLETED or IN_PROCESS states. The FAILED state indicates that the
request failed. The command may or may not have run. The details are in the error code.

• CommandErrorCode – A number indicating the error status of the command. A value of 0 is returned if
the command has the COMPLETED state. The code has a non-zero value when the state is FAILED.

• CommandErrorMessage – Text indicating what the error message is. It is present if the
CommandErrorCode is non-zero.

• ReplyTimestamp – Has the format CCYY-MM-DD HH:MM:SS. It indicates the time that the reply was sent.

• Automation – The current run state of the Server. Possible automation states are StartPending, Running,
Paused, PausePending, or StopPending.

The actual state of the Imaging Server is in the Automation attribute. Automation states are:

Automation Description

StartPending The Server has loaded and is preparing to run. This state usually only lasts a few seconds or
less.

Running Server is scanning for orders and/or processing orders

Paused Server is not scanning for new orders; it has suspended any jobs that were processing

PausePending Server in not scanning for new orders; it is finishing up processing orders

StopPending Server is not scanning for new orders; Orders in process are ending; The system starts to
shutdown

110700_L 55

Command Details
This section discusses Imaging Server request commands.

• GetServerStatus – Obtains information about Server’s operational state and system settings.

• GetOrderList –Obtains a list of all currently running orders on the Server.

The Imaging Server currently processes only one order at a time. This command returns the current order,
if there is one. A future version may work on several jobs concurrently.

This command provides current data on all of the orders that are being processed by the Imaging Server.
The orders in the list are not in any particular sequence. The OrderID and ClientID are both needed to
identify the order. When an operation is done with the ChangeOrder command, these values are
necessary.

Order State – If the Server is working on a job, it has the state of ACTIVE. If an action is taken to cancel an
order, the order has the state of CANCELLING for a few seconds until the job is cleaned up and the output
image file deleted. Following this, the order is removed from the order list.

• CancelOrder – Cancels the current order.

The command allows a client to cancel the order that is currently being processed.

The Server checks if the client making the request matches the ClientID associated with the order. If the
clients do not match, then the Server verifies that the message contains the Server password (provided
this password has been set).

. Note: Both the OrderID and ClientID attributes are used to properly identify orders. This information
is obtainable with the GetOrderList command.

• GetSessionLog – Obtains a list of the most recent log messages posted by Server.

This request causes the Server to return its messages (that it normally logs into a file to the clients) that
have been posted since startup. Up to 200 entries are returned. The client can specify a value for the
number of entries, but if the actual number is less, then only the actual number of log entries is returned,
up to a maximum value of 200.

• PauseServer – Stops order scanning and brings the Imaging Server to a Pause mode when it runs as a
Service.

The Server returns an immediate response. The CommandStatus normally is IN_PROCESS. When the
command is started, the Server goes into the Pause Pending state until it reaches the Pause state.

It is a command error to attempt a Pause command while the state is Pause Pending.

• SetServerPassword – Initially sets, changes, or resets the password of the Server.

Initially, the Server password is not set. This command allows any client to set the password so that the
Server then must have the password before it performs certain commands. The fact that the password is
set on the Server is known by the response to the GetServerStatus command.

Any string of characters may be used, including Asian Unicode. The encryption algorithm is provided on
page 78.

Deployment

Deployment

Java Deployment
Build Information
The Client API .jar files have been compiled for target Java VM version 1.7 or higher.

Required Files
The .jar files, Import statements and Properties files required by Java in the Class path to compile and run are
listed below.

Required JAR Files Required Import Statements Optional Property Files

AdminApi.jar

RmClient_9_0_n_8.jar

RmRmsApi_1_6_n_2.jar

RmRmsClient_1_6_n_2.jar

RmDiscoverApi_1_3_n_2.jar

test.jar

CommonApp.jar

RmStreamer_1_2_n_1.jar

import com.rimage.client.api.*;

import com.rimage.client.api.exception.*;

import com.rimage.msg.exception.*;

import com.rimage.exception.*;

log.properties

rmapi_log.properties

.NET Deployment
Build Information
The .Net Client API has been compiled using Visual Studio 2013 and .NET Version 4.0.

Rimage.Client.Api assembly implements the.NET API. This assembly can be used in any application
written in a .NET supported language.

This assembly is strongly named, which among other things means that Common Run Time (CLR) takes the
Assembly version of this assembly into account at load time.

Required .NET Assembly Files
The following files are required in C#, VB.NET, or any other .NET project.

Installed by default in C:\Program Files (x86)\RimageSdk\ApiSdk\bin.

Rimage.Client.Api.dll

The rest of the file list is identical to the Unicode list in C++ Required Files and Folders section.

C / C++ / VB 6 Deployment
Build Information
The Client API has been compiled using Microsoft Visual Studio 2013 compiler. Rimage DLLs include their
version in the name of the file. The name/version has the following format:

<name>_<major>_<minor>_n_<interface>.dll

110700_L 57

• Major version is seldom incremented, and only if a Rimage system undergoes a significant architectural
change. For example, version 5.x to version 6.x – the Rimage system changed from file based to
messaging/XML based.

• Minor version is incremented if a DLL is changed for a new release. Applications using this DLL need to be
rebuilt.

• “n” represents an internal build/bug fix version for a specific minor version. The actual File version of the
dll has a number in place of “n”. For example if the dll is named RmClient_9_0_n_8.dll, the File version of
this dll could be 9.0.1.8.

• Interface version represents iterations of the API itself. If the exported interface of the DLL itself is
changed, this version is incremented and the applications using this DLL needs to be rebuilt.

. Note: The _u option indicates Unicode versions; no _u indicates non-Unicode versions.

Required Linker Options
If your application is intended to run on Windows XP Service Pack 2, then do the following:

In Project Properties > Linker > Command Line > Additional options, enter /SAFESEH:NO.

. Note: This is a workaround for the Service Pack 2 Exception handling problem.

Required Files and Folders
The following files and directories are required in VB 6, C and C++ projects. Specify the paths and specify the
.lib files (either Unicode or non-Unicode) as indicated.

Required DLL Files (Non-Unicode)
Installed by default at:

C:\Program Files
(x86)\RimageSdk\ApiSdk\bin and \bin
(x64).

RmClient_9_0_n_8.dll

RmRms_1_6_n_2.dll

RmDiscover_1_3_n_2.dll

Required DLL Files (Unicode)
Installed by default at:

C:\Program Files
(x86)\RimageSdk\ApiSdk\bin and \bin
(x64).

RmClient_9_0_n_8_u.dll

RmRms_1_6_n_2.dll

RmDiscover_1_3_n_2.dll

Microsoft visual C++ 2013 Redistributable Pack is Required.

Required LIB Files (Non-Unicode)

. Note: This section does not apply to VB
deployment.

RmClient_9_0_n_8.lib

Required LIB Files (Unicode)

. Note: This section does not apply to VB
deployment.

RmClient_9_0_n_8_u.lib

Deployment

Required Include Directories

. Note: This section does not apply to VB or .NET deployment.

Installed by default at:

• C:\Program Files (x86)\RimageSdk\ApiSdk\include\client

• C:\Program Files (x86)\RimageSdk\ApiSdk\include\exception

Required #include Statements

. Note: This section does not apply to VB or .NET deployment.

#include <ClientApiInclude.h> (must be specified in project settings for C++)

#include <ClientApi_C_Include.h> (must be specified in project settings for C)

Optional files
rmapi_log.properties

Place this file in your application’s working folder to produce a Cient API log file. This file can be found at:

C:\Program Files (x86)\RimageSdk\ApiSdk\bin folder.

64 bit deployment
SDK 8.1 includes x86 and x64 dlls and libs.

File system location for x86 files:

C:\Program Files (x86)\RimageSdk\ApiSdk\bin and \lib

File system location for x64 files:

C:\Program Files (x86)\RimageSdk\ApiSdk\bin (x64) and \lib (x64)

110700_L 59

Appendix A – Sample Source Code Projects

Appendix A – Sample Source Code Projects
Rimage SDK install includes sample projects for working with the Client API. By default these projects are
placed in the C:\Users\Public\Rimage\RimageSDK\Samples\ClientApi and
C:\Users\Public\Rimage\RimageSDK\Samples\JavaApi folders. The samples are broken into
Java, C++, and .NET (written in C#) samples.

110700_L 61

Appendix B – Sample XML Documents

Appendix B – Sample XML Documents

Image Order Samples
The examples in this section include:

• XML ISO L2 with EditList Image Order

• XML ISO L2 from Parent Folder Image Order

• XML RockRidge Image Order

ISO L2 with Editlist Image Order
The example below shows an XML order including ISO L2 with an EditList Image.

<?xml version="1.0" ?>

<!--Sample XML file generated by XML Spy v4.2 U (http://www.xmlspy.com)-->

<!DOCTYPE ImageOrder SYSTEM "C:\Rimage\XML\ImageOrder_1.11.DTD">

<ImageOrder

 Priority="Normal"

 OrderId="Project1_IO"

 ClientId="SOFTWARE4_QuickDiscJ"

 Originator="SOFTWARE4_QuickDiscJ">

<Target Cluster="DefaultImageCluster" Server="ANY"/>

<Format>

 <PCMACFormat ISO="2" Apple="none" Joliet="false" Rockridge="false"/>

 <FormatOptions ForceUpperCase="false" AllowMultipleFilePaths="true"
ForceDot="true" ForceShort="false"

 Versions="true" IgnoreBadFiles="false" CaseSensitive="false"
Zip="false" AllowBootableCD="true"/>

</Format>

<Source>

 <EditList EditListPath="\\Mainserver\D_drive\tmp\test.edl"/>

</Source>

<Output Type="Normal" CDXA="false" Postgap="true" Size="74"
ImageFile="\\Mainserver\D_drive\tmp\test.img"/>

<Rules CheckNames="false" AllowDirExt="false" CheckLevels="false"/>

<VolumeName/>

</ImageOrder>

ISO L2 from Parent Folder Image Order
The example below shows an XML order including ISO L2 image from the Parent folder.

<?xml version="1.0"?>

<!--Sample XML file generated by XML Spy v4.2 U (http://www.xmlspy.com)-->

<!DOCTYPE ImageOrder SYSTEM "C:\Rimage\XML\ImageOrder_1.11.DTD">

<ImageOrder OrderId="IO1234" ClientId="ClientID" Originator="Tester"
Priority="Normal">

 <Target Cluster="DefaultImageCluster" Server="ANY"/>

 <Format>

 <PCMACFormat ISO="2" Apple="none" Joliet="false" Rockridge="false"/>

110700_L 63

 <FormatOptions ForceUpperCase="false" AllowMultipleFilePaths="true"
ForceDot="true" ForceShort="false" Versions="true" IgnoreBadFiles="false"
CaseSensitive="false" Zip="false" AllowBootableCD="true"/>

 </Format>

 <Source>

 <ParentFolder ParentFolderPath="c:\tmp\thumbnails" Destination="both"/>

 </Source>

 <Output ImageFile="c:\tmp\test.img" Type="Normal" CDXA="false"
Postgap="true" Size="74"/>

 <Rules CheckNames="true" AllowDirExt="false" CheckLevels="true"/>

 <VolumeName VolName="LabelTest"/>

 <PVDInfo PVDSystem="System" PVDVolumeSet="VolumeSet" PVDCopyright="Copyright
Martin Nohr" PVDPublisher="Publisher" PVDPreparer="Preparer"
PVDApplication="Application" PVDAbstract="Abstract"
PVDBibliography="Bibliography" PVDExpirationDate="" PVDEffectiveDate=""
GMTOffset="-32"/>

</ImageOrder>

RockRidge Image Order
The example below shows an XML order including a RockRidge image.

<?xml version="1.0" ?>

<!--Sample XML file generated by XML Spy v4.2 U (http://www.xmlspy.com)-->

<!DOCTYPE ImageOrder SYSTEM "C:\Rimage\XML\ImageOrder_1.11.DTD">

<ImageOrder OrderId="IO1234" ClientId="ClientID" Originator="Tester"
Priority="Normal">

 <Target Cluster="DefaultImageCluster" Server="ANY"/>

 <Format>

 <PCMACFormat ISO="2" Apple="none" Joliet="false" Rockridge="true"/>

 <FormatOptions ForceUpperCase="false" AllowMultipleFilePaths="true"
ForceDot="true" ForceShort="false" Versions="true" IgnoreBadFiles="false"
CaseSensitive="false" Zip="false" AllowBootableCD="true"/>

 </Format>

 <Source>

 <EditList EditListPath="c:\tmp\test.edl" Destination="both"/>

 </Source>

 <Output ImageFile="c:\tmp\test.img" Type="Normal" CDXA="false"
Postgap="true" Size="74"/>

 <Rules CheckNames="true" AllowDirExt="false" CheckLevels="true"/>

 <VolumeName VolName="LabelTest"/>

 <PVDInfo PVDSystem="System" PVDVolumeSet="VolumeSet" PVDCopyright="Copyright
Martin Nohr" PVDPublisher="Publisher" PVDPreparer="Preparer"
PVDApplication="Application" PVDAbstract="Abstract"
PVDBibliography="Bibliography" PVDExpirationDate="" PVDEffectiveDate=""
GMTOffset="-32"/>

</ImageOrder>

Appendix B – Sample XML Documents

Production Order Samples
This section includes examples of the following XML Production Order types:

• XML Audio Production Order

• XML Blue Book Production Order

• XML Mode 1 Production Order

• XML Print Only Production Order

• XML Data Disc Production Order

These are provided in detail in the following section.

A sample Production Order DTD would take up to 125 lines or more to illustrate here. To simplify things,
Rimage XML DTDs make extensive use of defaults when defining a DTD. Rimage also ships “cookie cutter” XML
documents with the Messaging Server software to give customers a higher level starting point.

. Note: It is the end user's responsibility to validate the XML strings before sending the XML document.

The 125-line Production Order DTD example mentioned above is provided as a sample Production Order XML
document. It is actually an instance of the Production Order DTD and would occupy only 16 lines. It would look
like this:

<?xml version="1.0"?>

<!DOCTYPE ProductionOrder SYSTEM "C:\Rimage\XML\ProductionOrder_1.14.dtd">

<ProductionOrder OrderId="POOrder_1" ClientId="kbtest" Originator=" "
Copies="1">

 <Media Type="CDR"/>

 <Target/>

 <Action>

 <Record>

 <WriteTrack Filename="c:\rimage\cd-r_images\Order_1.img"
DeleteAfterRecording="false">

 <Data Type="Mode1">

 <VolumeId volume_id="Mydisc"/>

 </Data>

 </WriteTrack>

 </Record>

 </Action>

 <Action>

 <Record>

 <Fixate Type="SAO" Final="true"/>

 </Record>

 </Action>

 <Action>

 <Label Filename="myfirst_label">

 <BTW Merge_Filename="c:\rimage\labels\merge.txt"
DeleteMergeFileOnCompletion="true"/>

 </Label>

 </Action>

</ProductionOrder>

110700_L 65

Audio Production Order
<?xml version="1.0"?>

<!DOCTYPE ProductionOrder SYSTEM "c:\rimage\xml\ProductionOrder_1.14.dtd">

<ProductionOrder Copies="1" OrderId="Index Test" ClientId="POF-XML"
Priority="Normal" Originator="POF-XML">

 <Media Size="120mm" Type="CDR"/>

 <Target Cluster="DefaultProductionCluster"/>

 <Action>

 <Record>

 <WriteTrack Filename="C:\Rimage\CD-R_Images\WS010002.A01">

 <Audio/> </WriteTrack> </Record>

 </Action>

 <Action>

 <Record>

 <WriteTrack Filename="C:\Rimage\CD-R_Images\WS010002.A02">

 <Audio/> </WriteTrack> </Record>

 </Action>

 <Action>

 <Record>

 <WriteTrack Filename="C:\Rimage\CD-R_Images\WS010002.A03">

 <Audio/> </WriteTrack> </Record>

 </Action>

 <Action>

 <Record>

 <WriteTrack Filename="C:\Rimage\CD-R_Images\WS010002.A04">

 <Audio/> </WriteTrack> </Record>

 </Action>

 <Action>

 <Record>

 <WriteTrack Filename="C:\Rimage\CD-R_Images\WS010002.A05">

 <Audio/> </WriteTrack> </Record>

 </Action>

 <Action>

 <Record>

 <WriteTrack Filename="C:\Rimage\CD-R_Images\WS010002.A06">

 <Audio/> </WriteTrack> </Record>

 </Action>

 <Action>

 <Record>

 <WriteTrack Filename="C:\Rimage\CD-R_Images\WS010002.A07">

 <Audio/> </WriteTrack> </Record>

 </Action>

 <Action>

 <Record>

 <WriteTrack Filename="C:\Rimage\CD-R_Images\WS010002.A08">

 <Audio/> </WriteTrack> </Record>

Appendix B – Sample XML Documents

 </Action>

 <Action>

 <Record>

 <WriteTrack Filename="C:\Rimage\CD-R_Images\WS010002.A09">

 <Audio/> </WriteTrack> </Record>

 </Action>

 <Action>

 <Record>

 <WriteTrack Filename="C:\Rimage\CD-R_Images\WS010002.A10">

 <Audio/> </WriteTrack> </Record>

 </Action>

 <Action>

 <Record>

 <Fixate Type="SAO" Final="true"/> </Record>

 </Action>

</ProductionOrder>

Blue Book Production Order
<?xml version="1.0"?>

<!DOCTYPE ProductionOrder SYSTEM "c:\rimage\xml\ProductionOrder_1.14.dtd">

<ProductionOrder Copies="1" OrderId="Blue Book" ClientId="POF-XML"
Priority="Normal" Originator="POF-XML">

 <Media Size="120mm" Type="CDR"/>

 <Target Cluster="DefaultProductionCluster"/>

 <Action>

 <Record>

 <WriteTrack Filename="F:\Images\WS010012.A01">

 <Audio/>

 </WriteTrack>

 </Record>

 </Action>

 <Action>

 <Record>

 <WriteTrack Filename="F:\Images\WS010012.A02">

 <Audio/>

 </WriteTrack>

 </Record>

 </Action>

 <Action>

 <Record>

 <WriteTrack Filename="F:\Images\WS010012.A03">

 <Audio/>

 </WriteTrack>

 </Record>

 </Action>

 <Action>

 <Record>

110700_L 67

 <WriteTrack Filename="F:\Images\WS010012.A04">

 <Audio/>

 </WriteTrack>

 </Record>

 </Action>

 <Action>

 <Record>

 <WriteTrack Filename="F:\Images\WS010012.A05">

 <Audio/>

 </WriteTrack>

 </Record>

 </Action>

 <Action>

 <Record>

 <Fixate Type="SAO" Final="false"/>

 </Record>

 </Action>

 <Action>

 <Record>

 <WriteTrack Filename="F:\Images\WS010012.D10">

 <Data Type="Mode1"/>

 </WriteTrack>

 </Record>

 </Action>

 <Action>

 <Record>

 <Fixate Type="SAO" Final="true"/>

 </Record>

 </Action>

 <Action>

 <Label Filename="C:\Rimage\Labels\SAMPLE.BTW">

 <BTW SaveAfterRendering="default"/>

 </Label>

 </Action>

</ProductionOrder>

Mode 1 Production Order
<?xml version="1.0"?>

<!DOCTYPE ProductionOrder SYSTEM "c:\rimage\xml\ProductionOrder_1.14.dtd">

<ProductionOrder Copies="1" OrderId="QD010005" ClientId="POF-XML"
Priority="Normal" Originator="QD01">

 <Media Size="120mm" Type="CDR"/>

 <Target Cluster="DefaultProductionCluster"/>

 <Action>

 <Record>

 <WriteTrack Filename="C:\Rimage\CD-R_Images\QD010005.IMG">

 <Data Type="Mode1"/>

Appendix B – Sample XML Documents

 </WriteTrack>

 </Record>

 </Action>

 <Action>

 <Record>

 <Fixate Type="SAO" Final="true"/>

 </Record>

 </Action>

 <Action>

 <Label Filename="C:\Rimage\Temp\QD010005.BTW">

 <BTW SaveAfterRendering="false"/>

 </Label>

 </Action>

</ProductionOrder>

Print Only Production Order
<?xml version="1.0"?>

<!DOCTYPE ProductionOrder SYSTEM "C:\Rimage\XML\ProductionOrder_1.14.dtd">

<ProductionOrder Copies="10" OrderId="Print-Only" ClientId="POF-XML"
Priority="Normal" Originator="POF-XML">

 <Media Size="120mm" Type="CDR"/>

 <Target Cluster="DefaultProductionCluster"/>

 <Action>

 <Label Filename="C:\Rimage\Labels\Barcode.btw">

 <BTW Merge_Filename="C:\Rimage\Labels\Barcode.txt"
SaveAfterRendering="default"/>

 </Label>

 </Action>

</ProductionOrder>

Data Disc Production Order
Below is a Production Order of 1 copy of OrderID "Record Data Disc" from ClientID "POF-XML" with Normal
Priority, Originated from "db" on 120mm CDR Media Size targeted for "Dave's" Cluster (RecordDataDisc.xml).

<?xml version="1.0" ?>

<!-- edited with XMLSPY v5 U (http://www.xmlspy.com) by Jeff Schierman (Rimage
Corp.) -->

<!DOCTYPE ProductionOrder SYSTEM "c:\rimage\xml\ProductionOrder_1.14.dtd">

<ProductionOrder Copies="1" OrderId="Record Data Disc" ClientId="POF-XML"
Priority="Normal" Originator="db">

 <Media Size="120mm" Type="CDR"/>

 <Target Cluster="Dave's"/>

 <Action>

 <Record>

 <WriteTrack Filename="E:\Images\ClipArt.IMG">

 <Data Type="Mode1" MergeSessions="true"/>

 </WriteTrack>

 </Record>

 </Action>

110700_L 69

 <Action>

 <Record>

 <Fixate Type="SAO" Final="true"/>

 </Record>

 </Action>

 <Action>

 <Label Filename="C:\Rimage\Labels\CD Creator.btw">

 <BTW SaveAfterRendering="default"/>

 </Label>

 </Action>

</ProductionOrder>

Order Status Samples
XML Image Order status (dh_i01.xml) and Production Order status (dh_p01.xml) samples are provided below.

Image Order Status
<?xml version="1.0"?>

<!DOCTYPE ImageOrderStatus SYSTEM
"\\SWRASKINREST\Rimage\XML\ImageOrderStatus_1.6.dtd">

<ImageOrderStatus OrderId="QD_DHASSELER_ENG-DHASSLER_0142"
ClientId="QD_DHASSELER_ENG-DHASSLER" ServerId="SWRASKINREST_IS01"
Originator="QD_DHASSELER_ENG-DHASSLER" MessagingHost="SWRASKINREST"
MessagingPort="4664" OriginalOrder="">

 <Status State="COMPLETED" CurrentStatus="Writing File 27 of 26"
PercentCompleted="100"/>

 <Timestamps OrderRead="2006-10-19 16:45:00" OrderCompleted="2006-10-19
16:45:09"/>

</ImageOrderStatus>

Production Order Status
<?xml version="1.0"?>

<!DOCTYPE ProductionOrderStatus SYSTEM
"\\SWRASKINREST\Rimage\XML\ProductionOrderStatus_1.12.dtd">

<ProductionOrderStatus OrderId="QD_DHASSELER_ENG-DHASSLER_0142"
ClientId="QD_DHASSELER_ENG-DHASSLER" ServerId="SWRASKINREST_PS01"
Originator="QD_DHASSELER_ENG-DHASSLER" MessagingHost="SWRASKINREST"
MessagingPort="4664" OriginalOrder="" SimulatePrint="true"
SimulateWrite="true">

 <Status Stage="RECORDING" State="IN_PROCESS" CopiesCompleted="0"
CopiesRequested="1" PercentCompleted="0"/>

 <Timestamps OrderRead="2006-10-19 16:45:14"/>

 <Device Identifier="Recorder 1, Cache 1" IsStreaming="false"
CurrentState="LOADING"/>

</ProductionOrderStatus>

Spanning XML Samples
Image Order

<?xml version="1.0"?>

Appendix B – Sample XML Documents

<!DOCTYPE ImageOrder SYSTEM "\\SWRASKINREST\Rimage\XML\ImageOrder_1.15.DTD">

<ImageOrder OrderId="QD_DHASSELER_ENG-DHASSLER_0143_I001"
ClientId="QD_DHASSELER_ENG-DHASSLER" Priority="Normal"
Originator="QD_DHASSELER_ENG-DHASSLER">

 <Target Server="ANY" Cluster="DefaultImageCluster"/>

 <Format>

 <PCMACFormat ISO="2"/>

 <FormatOptions Zip="false" ForceDot="false" Versions="false"
ForceShort="false" CaseSensitive="false" ForceUpperCase="false"
IgnoreBadFiles="false" AllowBootableCD="false" AllowMultipleFilePaths="true"/>

 </Format>

 <Source>

 <EditList EditListPath="\\SWRASKINREST\Rimage\CD-
R_Images\QD_DHASSELER_ENG-DHASSLER_0143.EDL"/>

 </Source>

 <Output CDXA="false" Size="80" Type="RimageHeader" Postgap="false"
ImageFile="\\SWRASKINREST\Rimage\CD-R_Images\QD_DHASSELER_ENG-
DHASSLER_0143.img" PowerSpan="true"/>

 <Rules CheckNames="true" AllowDirExt="false" CheckLevels="false"/>

 <VolumeName VolName="My Disc"/>

 <PVDInfo GMTOffset="-24" PVDSystem="" PVDAbstract="" PVDPreparer="UNTITLED"
PVDCopyright="" PVDPublisher="" PVDVolumeSet="" PVDApplication=""
PVDBibliography="" PVDEffectiveDate="00/00/00" PVDExpirationDate="00/00/00"/>

 <Controls Overwrite="true" WaitForSpace="-1"/>

</ImageOrder>

Image Order Status
<?xml version="1.0"?>

<!DOCTYPE ImageOrderStatus SYSTEM
"\\SWRASKINREST\Rimage\XML\ImageOrderStatus_1.6.dtd">

<ImageOrderStatus OrderId="QD_DHASSELER_ENG-DHASSLER_0143_I001"
ClientId="QD_DHASSELER_ENG-DHASSLER" ServerId="SWRASKINREST_IS01"
Originator="QD_DHASSELER_ENG-DHASSLER" MessagingHost="SWRASKINREST"
MessagingPort="4664" OriginalOrder="">

 <Status State="IN_PROCESS" SpanVolume="1" CurrentStatus="Writing File 1 of
8" SpanVolumeName="\\SWRASKINREST\Rimage\CD-R_Images\QD_DHASSELER_ENG-
DHASSLER_0143001.img" CurrentOperation="Volume 1 of 2" PercentCompleted="5"
SpanTotalVolumes="2" SpanVolumePercent="5">

 <VolumeNameListEntry VolumeName="\\SWRASKINREST\Rimage\CD-
R_Images\QD_DHASSELER_ENG-DHASSLER_0143001.img"/>

 <VolumeNameListEntry VolumeName="\\SWRASKINREST\Rimage\CD-
R_Images\QD_DHASSELER_ENG-DHASSLER_0143002.img"/>

 </Status>

 <Timestamps OrderRead="2006-10-19 16:49:56"/>

</ImageOrderStatus>

Order Set
<?xml version="1.0"?>

<!DOCTYPE OrderSet SYSTEM "\\SWRASKINREST\Rimage\XML\OrderSet_1.1.DTD">

110700_L 71

<OrderSet ClientId="QD_DHASSELER_ENG-DHASSLER" Priority="Normal"
OrderSetId="QD_DHASSELER_ENG-DHASSLER_0143" Originator="QD_DHASSELER_ENG-
DHASSLER" TargetServer="SWRASKINREST_PS01"
TargetCluster="DefaultProductionCluster">

 <OrderReference OrderId="QD_DHASSELER_ENG-DHASSLER_0143_P002"/>

 <OrderReference OrderId="QD_DHASSELER_ENG-DHASSLER_0143_P003"/>

 <ProductionOrderSet Copies="1" MediaSize="120mm" MediaType="CDR"
TargetLine="1" OrdersHaveLabels="false" TargetOutputMailslot="0"/>

</OrderSet>

Order Set Status
<!DOCTYPE OrderSetStatus SYSTEM
"\\SWRASKINREST\Rimage\XML\OrderSetStatus_1.4.dtd">

<OrderSetStatus ClientId="QD_DHASSELER_ENG-DHASSLER"
ServerId="SWRASKINREST_PS01" OrderSetId="QD_DHASSELER_ENG-DHASSLER_0143"
Originator="QD_DHASSELER_ENG-DHASSLER" MessagingHost="SWRASKINREST"
MessagingPort="4664" OriginalOrderSet="">

 <Status Stage="BUSY" State="IN_PROCESS" PercentCompleted="0"/>

 <Timestamps OrderRead="2006-10-19 16:50:40"/>

 <OrderReference OrderId="QD_DHASSELER_ENG-DHASSLER_0143_P002"/>

 <OrderReference OrderId="QD_DHASSELER_ENG-DHASSLER_0143_P003"/>

 <ProductionOrderSetStatus CopiesCompleted="0" CopiesRequested="2"/>

</OrderSetStatus>

Production Orders
<?xml version="1.0"?>

<!DOCTYPE ProductionOrder SYSTEM
"\\SWRASKINREST\Rimage\XML\ProductionOrder_1.21.DTD">

<ProductionOrder Copies="1" LogonId="dhasseler" OrderId="QD_DHASSELER_ENG-
DHASSLER_0143_P002" ClientId="QD_DHASSELER_ENG-DHASSLER" Priority="Normal"
ImagerHost="SWRASKINREST" Originator="QD_DHASSELER_ENG-DHASSLER"
ReferencedSet="QD_DHASSELER_ENG-DHASSLER_0143" ExternalImager="true"
SimulatePrinting="false" SimulateRecording="true">

 <Media Size="120mm" Type="CDR"/>

 <Target Line="1" Server="SWRASKINREST_PS01"
Cluster="DefaultProductionCluster"/>

 <InOut OutputMailslot="0"/>

 <Action>

 <Record>

 <WriteTrack Filename="\\SWRASKINREST\Rimage\CD-
R_Images\QD_DHASSELER_ENG-DHASSLER_0143001.img">

 <Data Type="Mode1" MergeSessions="false"/>

 </WriteTrack>

 </Record>

 </Action>

 <Action>

 <Record>

 <Fixate Type="SAO" Final="true"/>

 </Record>

 </Action>

</ProductionOrder>

Appendix B – Sample XML Documents

<?xml version="1.0"?>

<!DOCTYPE ProductionOrder SYSTEM
"\\SWRASKINREST\Rimage\XML\ProductionOrder_1.14.DTD">

<ProductionOrder Copies="1" LogonId="dhasseler" OrderId="QD_DHASSELER_ENG-
DHASSLER_0143_P003" ClientId="QD_DHASSELER_ENG-DHASSLER" Priority="Normal"
ImagerHost="SWRASKINREST" Originator="QD_DHASSELER_ENG-DHASSLER"
ReferencedSet="QD_DHASSELER_ENG-DHASSLER_0143" ExternalImager="true"
SimulatePrinting="false" SimulateRecording="true">

 <Media Size="120mm" Type="CDR"/>

 <Target Line="1" Server="SWRASKINREST_PS01"
Cluster="DefaultProductionCluster"/>

 <InOut OutputMailslot="0"/>

 <Action>

 <Record>

 <WriteTrack Filename="\\SWRASKINREST\Rimage\CD-
R_Images\QD_DHASSELER_ENG-DHASSLER_0143002.img">

 <Data Type="Mode1" MergeSessions="false"/>

 </WriteTrack>

 </Record>

 </Action>

 <Action>

 <Record>

 <Fixate Type="SAO" Final="true"/>

 </Record>

 </Action>

</ProductionOrder>

Production Order Statuses
<?xml version="1.0"?>

<!DOCTYPE ProductionOrderStatus SYSTEM
"\\SWRASKINREST\Rimage\XML\ProductionOrderStatus_1.12.dtd">

<ProductionOrderStatus OrderId="QD_DHASSELER_ENG-DHASSLER_0143_P002"
ClientId="QD_DHASSELER_ENG-DHASSLER" ServerId="SWRASKINREST_PS01"
Originator="QD_DHASSELER_ENG-DHASSLER" MessagingHost="SWRASKINREST"
MessagingPort="4664" OriginalOrder="" SimulatePrint="true"
SimulateWrite="true">

 <Status Stage="RECORDING" State="IN_PROCESS" CopiesCompleted="0"
CopiesRequested="1" PercentCompleted="0"/>

 <Timestamps OrderRead="2006-10-19 16:50:44"/>

 <Device Identifier="Recorder 1, Cache 1" IsStreaming="false" PercentDone="0"
CurrentState="RECORDING"/>

</ProductionOrderStatus>

Server Configuration Samples
Production Server Configuration

<!DOCTYPE ProductionServerConfiguration SYSTEM
"C:\Rimage\XML\ProductionServerConfiguration_1.15.dtd">

<ProductionServerConfiguration>

110700_L 73

 <ServerInfo ID="RIMAGE-4WEHMIR2_PS01" Cluster="DefaultProductionCluster"
Hostname="RIMAGE-4WEHMIR2" IsService="true" OSVersion="Windows XP Embedded"
SystemFolder="C:\Rimage" IsPasswordSet="false" SoftwareVersion="7.3.23.0"/>

 <Transporter Type="Rimage DLN5200" Offline="false" InquiryString="Autoloader
1, COM1: DESKTOP 2 6.022E SN-U049536 ">

 <TransporterCapabilities MediaSize="120mm" MediaType="CDR"
PerfectPrint="false"/>

 <Bin Level="86" Usage="Input"/>

 <Bin Level="0" Usage="Output_Reject"/>

 <Mailslot Level="20" Usage="Output" NumberOfSlots="5"/>

 <Recorder Offline="false" DiscCount="735" InquiryString="Recorder 1,
Drive E: PLEXTOR CD-R PREMIUM 1.02 SN-0186554">

 <RecorderCapabilities CanRecordCD-R="true" CanDestroyCD-R="true"
CanRecordDVD-R="false" CanDestroyDVD-R="false" CanRecordPocketCD-R="true"
MaxCDRecordingSpeed="52" CanDestroyPocketCD-R="true"/>

 <Cache InquiryString="d:\Cache0"/>

 <Cache InquiryString="c:\Cache0"/>

 </Recorder>

 <Recorder Offline="false" DiscCount="726" InquiryString="Recorder 2,
Drive F: PLEXTOR CD-R PREMIUM 1.02 SN-0186553">

 <RecorderCapabilities CanRecordCD-R="true" CanDestroyCD-R="true"
CanRecordDVD-R="false" CanDestroyDVD-R="false" CanRecordPocketCD-R="true"
MaxCDRecordingSpeed="52" CanDestroyPocketCD-R="true"/>

 <Cache InquiryString="d:\Cache1"/>

 <Cache InquiryString="c:\Cache1"/>

 </Recorder>

 <Printer Type="Everest-II" Ribbon="Color" Offline="false" DiscCount="0"
InquiryString="Printer - USBPRINT-0, COM1: EVEREST V1.06 SN- E012002"/>

 </Transporter>

 <Transporter Type="Manual" Offline="false" InquiryString="Loader 2, MANUAL
LOADER">

 <TransporterCapabilities MediaSize="ANY" MediaType="BOTH"
PerfectPrint="false"/>

 </Transporter>

</ProductionServerConfiguration>

Imaging Server Configuration
<!DOCTYPE ImageServerConfiguration SYSTEM
"C:\Rimage\XML\ImageServerConfiguration_1.4.dtd">

<ImageServerConfiguration>

 <ServerInfo ID="RIMAGE-4WEHMIR2_IS01" Cluster="DefaultImageCluster"
Hostname="RIMAGE-4WEHMIR2" IsService="true" OSVersion="Windows XP Professional"
Description="Rimage Imaging Server" SupportsSCP="true"
SystemFolder="C:\Rimage\" IsPasswordSet="false" SoftwareVersion="7.3.25.0"/>

 <Options Overwrite="true"/>

</ImageServerConfiguration>

Server Dialog Samples
Alert Dialog

<!DOCTYPE AlertDialog SYSTEM "C:\Rimage\XML\AlertDialog_1.7.dtd">

Appendix B – Sample XML Documents

<AlertDialog ID="190448" Title="Alert" Message="Transporter Clear?"
ServerId="RIMAGE-4WEHMIR2_PS01">

 <Type>

 <OneButton Text="OK"/>

 </Type>

</AlertDialog>

Error Dialog
<!DOCTYPE ErrorDialog SYSTEM "\\software10\Rimage\XML\ErrorDialog_1.4.dtd">

<ErrorDialog ID="530004" Title="TRANSPORTER ERROR!" Device="Autoloader 1, COM2"
Message="Error gripping disc.

Center disc in open drawer manually to retry Transporter Sense Code = 8 (medium
not present)" ServerId="software10_PS01" ErrorCode="140">

 <Buttons>

 <Top Text="Retry"/>

 <Bottom Text="Disable Transporter"/>

 </Buttons>

</ErrorDialog>

Server Request / Reply Samples
GetServerStatus Request

<?xml version="1.0"?>

<!DOCTYPE ProductionServerRequest SYSTEM
c:\Rimage\XML\ProductionServerRequest_1.18.dtd">

<ProductionServerRequest ServerId="software10_PS01" ClientId="software10_RSM" >

 <GetServerStatus GetAutoloaderStatus="true" />

</ProductionServerRequest>

GetServerStatus Reply
<?xml version="1.0"?>

<!DOCTYPE ProductionServerReply SYSTEM
c:\Rimage\XML\ProductionServerReply_1.18.dtd">

<ProductionServerReply ClientId="software10_RSM" ServerId="software10_PS01"
Automation="Running" CommandState="COMPLETED" ReplyTimestamp="2004-05-06
08:25:01" CommandErrorCode="0">

 <ServerStatus>

 <ServerInfo Cluster="DefaultProductionCluster" Hostname="software10"
IsService="false" Description="Dave's Production &Server1"
PasswordSet="false" SystemFolder="\\software10\Rimage" MessagingPort="4664"
SoftwareVersion="6.4.26.0"/>

 <ProductionCount CopiesProduced="0" CopiesRejected="2"/>

 <AutoloaderStatus Offline="true" LoaderNumber="1"/>

 <AutoloaderStatus Offline="false" LoaderNumber="2">

 <Recorder Number="1" Offline="false"/>

 </AutoloaderStatus>

 </ServerStatus>

</ProductionServerReply>

110700_L 75

SetParameter Request
<?xml version="1.0"?>

<!DOCTYPE ProductionServerRequest SYSTEM
c:\Rimage\XML\ProductionServerRequest_1.18.dtd">

<ProductionServerRequest ServerId="software10_PS01" ClientId="software10_RSM" >

 <SetParameter >

 <Setting>

 <Recording>

 <MaxRecordingSpeed Value="Max" />

 </Recording>

 </Setting>

 <Setting>

 <Printing>

 <SimulatePrinting Value="true" />

 </Printing>

 </Setting>

 </SetParameter>

</ProductionServerRequest>

Appendix B – Sample XML Documents

SetParameter Reply
<?xml version="1.0"?>

<!DOCTYPE ProductionServerReply SYSTEM
c:\Rimage\XML\ProductionServerReply_1.11.dtd">

<ProductionServerReply ClientId="software10_RSM" ServerId="software10_PS01"
Automation="Running" CommandState="COMPLETED" ReplyTimestamp="2004-05-06
08:36:02" CommandErrorCode="0">

 <AckOnly/>

</ProductionServerReply>

110700_L 77

Appendix C – Server Status and Control Password
Encryption

Encryption Method
The encryption method is designed to work only with Unicode. Existing servers and clients that use MBCS
need to convert to and from Unicode for this algorithm to work. Windows library calls are available for
converting between MBCS and Unicode. Clients already using Unicode will find the algorithm simple to
implement. The following steps include the MBCS to/from Unicode operations.

The following steps are performed to encrypt a password for transmission to a server.

1. Get the Unicode password. If this is in MBCS in a Windows client or server it must first be translated to
Unicode.

2. Encrypt this using the Rimage encryption algorithm that treats the array as a stream of bytes. Sample
code follows later in this document.

3. Encode the resulting string of bytes using the well-known Base64 standard. This translates the stream of
bytes into a stream of ASCII characters. Every 6 bits are changed to one of the characters in the set: [A-Za-
z0-9+/]. This results in 4 characters from every 3 bytes and is also known as 3-4 encoding. These
characters have the important property that they are represented in all versions of ISO 646, including US-
ASCII. The advantage of this is that this stream of characters is guaranteed to pass through any kind of
transmission system with no damage. It can be freely translated between Unicode, UTF, etc and still come
out correct.

When a server receives the password, the following steps are taken.

1. Decode the Base64 to get the byte stream back.

2. Decrypt this byte stream using the Rimage encryption algorithm. Sample code for the algorithm follows
later in this document. The byte stream is now the original Unicode password. On any server or client
requiring MBCS this string can be translated using Windows library calls.

. Note:

• Byte swapping may be necessary in some cases depending on the language and hardware used.

• This method allows password support in Unicode so that all languages will work.

Rimage Core Encryption Algorithm
The new core encryption algorithm is similar to the old one, with the exception that no character wrapping is
performed. In other words, each byte is simple incremented or decremented as necessary and overflow is not
considered.

This is the pseudo-code for encryption. Start with a byte array (really the Unicode bytes) and a code number
from 1 to 20. Note that the code number is restricted in the range 1 to 20.

 For first byte to last byte in array
 currentbyte = currentbyte + codenum
 codenum = codenum + 1
 if (codenum > 20)
 codenum = 1

Here is the pseudo-code for decryption. As before, start with a byte array and a code number from 1 to 20.
 For first byte to last byte in array
 currentbyte = currentbyte - codenum

Appendix C – Server Status and Control Password Encryption

 codenum = codenum + 1
 if (codenum > 20)
 codenum = 1

Password Encoding Samples Using C++
This code implements the encode, decode, and core encryption algorithms in C++ for Windows. This code also
includes the MBCS translations, which are not necessary for a Unicode service or client. The Base64 routines
are part of the Microsoft VC++ library, but could easily be coded in almost any programming language.

The encryption/decryption algorithm is implemented using recursion instead of a loop. If passwords were
thousands of characters long this might be better coded using a loop.

Encoding and Decoding a MBCS String
// Encode an MBCS string

// first change it to Unicode

CString Encode(LPCSTR txt, int code)

{

 CString cs;

 wchar_t *wbuf;

 int size = strlen(txt);

 // get the size we need

 size = MultiByteToWideChar(CP_ACP, MB_PRECOMPOSED, txt, size, NULL, 0);

 // allocate a buffer

 wbuf = new wchar_t[size];

 // change to Unicode

 size = ::MultiByteToWideChar(CP_ACP, MB_PRECOMPOSED, txt, size, wbuf, size);

 // set to byte count

 size *= sizeof wchar_t;

 // encrypt here

 Crypt((BYTE*)wbuf, code, true, size);

 // figure out how big we need a buffer for base64

 int b64size = Base64EncodeGetRequiredLength(size);

 // translate

 Base64Encode((BYTE*)wbuf, size, cs.GetBuffer(b64size), &b64size);

 cs.ReleaseBuffer(b64size);

 // free the buffer

 delete []wbuf;

 return cs;

}

// decode a base 64 string into MBCS

// change input to bytes

// decrypt it

// change it to MBCS

CString Decode(LPCSTR b64txt, int code)

{

 CString cs;

 BYTE *buf;

 // figure out the buffer size we need

110700_L 79

 int size = Base64DecodeGetRequiredLength(strlen(b64txt));

 // get a buffer

 buf = new BYTE[size];

 // translate

 Base64Decode(b64txt, strlen(b64txt), buf, &size);

 // decrypt here

 Crypt(buf, code, false, size);

 // get the MBCS length

 int msize = ::WideCharToMultiByte(CP_ACP, WC_COMPOSITECHECK, (LPCWSTR)buf,
size/(sizeof wchar_t), NULL, 0, NULL, NULL);

 // translate the string

 ::WideCharToMultiByte(CP_ACP, WC_COMPOSITECHECK, (LPCWSTR)buf, size/(sizeof
wchar_t), cs.GetBuffer(msize), msize, NULL, NULL);

 cs.ReleaseBuffer(msize);

 // free the buffer

 delete []buf;

 return cs;

}

/*

 encrypt or decrypt a byte array

 similar to old Rimage encryption, except the values are not limited

*/

void Crypt(BYTE* pwd, int dnum, bool encode, int size)

{

 // see if done or no encoding needed

 if (dnum==0 || size==0)

 return;

 // modify the value

 *pwd += encode ? dnum:-dnum;

 // handle the next character

 Crypt(pwd+1, (dnum%20)+1, encode, size-1);

}

Encoding and Decoding a Unicode String
void Crypt(BYTE* pwd, int dnum, bool encode, int size)

{

 // see if done or no encoding needed

 if (dnum==0 || size==0)

 return;

 // modify the value

 *pwd += encode ? dnum:-dnum;

 // handle the next character

 Crypt(pwd+1, (dnum%20)+1, encode, size-1);

}

//// _UNICODE should be defined

// Encode an Unicode string

Appendix C – Server Status and Control Password Encryption

// _UNICODE should be defined

// Encode an Unicode string

CString Encode (const wchar_t *csTxt , int code)

{

 CString cs;

 wchar_t *wbuf;

 int size = wcslen(csTxt);

 // allocate a buffer

 wbuf = new wchar_t[size+1];

 // Copy the Unicode characters

 wcscpy (wbuf, csTxt);

 // set to byte count

 size *= sizeof wchar_t;

 // encrypt here

 Crypt((BYTE*)wbuf, code, true, size);

 // figure out how big we need a buffer for base64

 int b64size = Base64EncodeGetRequiredLength(size);

 // translate

 char *destBuf;

 destBuf = new char[b64size];

 Base64Encode((BYTE*)wbuf, size, destBuf, &b64size);

 // Convert to CString

 _TCHAR *tsEncoded = cs.GetBuffer(b64size + 1);

 for (int i=0; i < b64size; i++)

 tsEncoded[i] = destBuf[i];

 tsEncoded[i] = 0;

 cs.ReleaseBuffer(b64size+1);

 // free the buffers

 delete []wbuf;

 delete []destBuf;

 return cs;

}

// _UNICODE should be defined

// decode a UNICODE base64 string

// change input to 8-bit characters

// decrypt input to bytes

// change bytes to UNICODE string

CString Decode(const wchar_t *csB64txt, int code)

{

 CString cs;

 BYTE *buf;

 int lenIn = wcslen(csB64txt);

 // figure out the buffer size we need

 int size = Base64DecodeGetRequiredLength(lenIn);

110700_L 81

 // get a buffer

 buf = new BYTE[size];

 // Convert string to 8 bit characters

 char *sourceBuf;

 sourceBuf = new char[lenIn + 1];

 for (int i=0; i < size; i++)

 sourceBuf[i] = static_cast<char>(csB64txt[i]);

 sourceBuf[i] = 0;

 // translate

 Base64Decode(sourceBuf, lenIn, buf, &size);

 // decrypt here

 Crypt(buf, code, false, size);

 wchar_t *tsDecoded = (wchar_t *)buf;

 int usize = size/sizeof(wchar_t);

 _TCHAR *tsBuf = cs.GetBuffer (usize + 1);

 //Copy the decoded bytes into the CString

 for (i=0; i < usize; i++)

 tsBuf[i] = tsDecoded[i];

 tsBuf[i] = 0;

 cs.ReleaseBuffer(usize + 1);

 // free the buffers

 delete []buf;

 delete []sourceBuf;

 return cs;

}

110700_L 83

Appendix D – Error Codes

Production Order Status Codes
The following table lists the error codes that can be returned from the Production Server regarding failed
production orders. These codes are in the ErrorCode field of the ProductionOrderStatus message. The
ErrorMessage field will give additional information that can be used to determine the exact cause of the
problem.

103 Invalid target line
122 No matching combination bin setting is available
123 Invalid input bin
125 No ‘un-reserved’ input bins available
126 Invalid mailslot
127 No ‘reserved’ mailslots available
128 No ‘un-reserved output bins available
129 A required message property is missing in the order
130 Message attribute and XML order attribute are different
131 XML order contains an order set reference, but no order sets are in process
133 There is a mismatch between one of the order set attributes and one of the order attributes
204 Invalid label type
205 Unable to open image file
206 Error reading image file
208 Master disc has different media type than was specified in the order
211 A feature specified by the order is not available. Examples:

A non-mode 1 track specified for DVDR. Raw mode specified in the order, but the raw mode license is
missing.

212 Order specifies a label, but no printer is present
213 Order sets can't be run because all autoloaders are running print-only jobs
216 Label file specified in order not found
217 A ‘full disc’ image was specified as a track in a multi-track order
222 More than 99 tracks were specified in the order
223 No actions were specified in the order
226 Only a single record action is allowed for a DDP order
227 Unable to open the DDPID file in the specified DDP folder
228 Error reading the DDPID file
229 Unable to open the DDPMS file in the specified DDP folder
230 The DDPMS file contains too few records
231 Unsupported type in the DDPMS file
232 Unable to open the subcode file in the specified DDP folder
233 Error reading the subcode file
234 Unsupported DDP type field
235 The DSS member of the map packet does not match the index 0 subcode record (DDP)
237 The CD Text file cannot be found, accessed, or is unusable
238 For a dual-layer DVD+R, the first layer must be larger than the second
239 Only partially processed R-W subcode data (xxRSTUVW) is supported for DDP
240 Error opening an R-W subcode file
241 Unable to open or stream DDP image file
242 Source storage mode differs between layer 0 and layer 1
243 Error parsing the DDP-PQ file

Appendix D – Error Codes

250 Media type of master is different than available media types
300 Label file not found
301 Error reading job file or job sequence error
302 There was an error parsing the XML order
303 Temporary file open error or memory allocation failure
304 Error reading from a cache file
305 Error writing to a cache file
306 Insufficient disk space to create a cache file of the required size
311 Image filename is empty in the XML order
312 Unable to open a track image file
313 Error reading track image file or error reading master disc
315 The production order was cancelled
316 Order cancelled because password not entered
317 Audio file is not compatible
325 Job cannot be logged in Performance Track Database
334 The merge file associated with the label cannot be found
336 Image file write error
337 One of the ‘raw’ image file checks failed
338 The CD Designer program couldn't be found to print a label
339 Failed to render label file for printing
340 Merge file has insufficient records for the number of copies specified in the order
342 Order specifies use of the ModifyDisc DLL, but it wasn't loaded successfully
343 Order was cancelled by the ModifyDisc DLL
344 Image is too large to record on specified media or there is not enough free space on disk to read a track

image for a read order
345 The production order was cancelled via the API
346 There was an error during ISO/UDF extraction for a read order
347 The wrong media is loaded in the input bin
348 PCL label file validation failed because ribbon type in PCL doesn't match installed ribbon
349 Job cancelled because Windows is shutting down
350 Failed to copy from a stream to a temporary file
351 Validation of merge file failed due to mismatch with field names in XFDF file
352 Error creating temporary merge file for a particular disc
353 Recorders cannot simulate in raw mode
354 PCL label file validation failed because label contains multiple copies
355 PCL label file validation failed
356 All recorders are allocated to suspended jobs
357 Order specified no caching, but caching is required
358 Blu-lock DLL failed to start recording
359 Blu-lock DLL failed to start verifying
360 Order contains non-hex character in Customize:UserData field for BINHEX data type
363 BIN/CUE parsing failed
402 The Perfect Print (rotator) operation failed after numerous retries
405 A segmented order failed recording on the 2nd or greater segment
410 The Rimage Video Protect (RVP) DLL failed to load
411 There are too few protected recordings available to complete the order
412 The order specified to generate a protected image but the image is already protected
413 The image is protected but no protection was specified in the order
414 The 'ProtectedImageFilename' attribute was not specified in the order and the image is not protected
415 The image will be too large to fit on the disc after it is protected

110700_L 85

416 The operation to determine the protected image size failed
417 There are no more conversions remaining
418 The image check operation failed
419 The generation of the protected image failed
420 Failed to open newly created protected image file
421 Failed to increment burn count
500 Failed to create the track map file on a read order
501 Error writing the track map file on a read order
503 Error generating the track map file on a read order (disc reading problem)
504 Invalid track type to create a PVD file for
505 Track specified to read does not exist on the disc
506 Disc was packet-written, cannot copy
507 The input hopper was empty on a read order
508 Error loading disc into the drive on a read order
509 Destroy operation failed in a read order
510 Specified action to use ModifyDisc DLL's ReadProc, but DLL was not loaded
511 PositionForPhoto action requires Bulk Read mode and an autoloader
512 Error creating DDP
513 Disc is blank
514 Read order succeeded, but one or more tracks were unreadable
515 There is not enough hard drive space to store the image
516 Position for photo failed because printer can't clamp disc
517 No disc in reader, precede Read Track action with Map Disc action
518 Track was not an IFO file as expected
519 Track was not a VOB file as expected
520 Track was not a VRMANGR IFO file as expected
524 Failed to create folder specified in order for span-restore operation
525 No files were read from a disc in the set
526 Error reading manifest file
527 Spanned sets created in 8.3 format are not supported
528 A disc with a different spanned set ID was found
529 Manifest file had a password digest, but no password was present in the order
530 Problem setting up decryption (or decrypting) for span restore
531 Manifest file password digest does not match the digest of the password in the order
540 Failed to take disc picture in PositionForPhoto operation
600 File size changed between imaging and downloading when processing a PowerImage file
601 Unable to open a component file when processing a PowerImage file
602 Error reading a component file when processing a PowerImage file
700 AES key filename was specified without a corresponding RSA private key filename
701 Failed to open RSA private key file
702 Failed to read RSA private key file
703 Failed to decrypt RSA private key
704 Failed to open RSA private key with OpenSSL
705 Failed to open encrypted AES key file
706 Failed to read encrypted AES key file
707 Failed to decrypt AES key
708 Error configuring OpenSSL
709 Image decryption is not supported in the current configuration
712 Invalid AES key length

Appendix D – Error Codes

Production Server Reply Error Codes
The following table lists the error codes that can be returned from the Production Server regarding failed
server requests. These codes are in the CommandErrorCode field of the ProductionServerReply message. The
CommandErrorMessage field will give additional information that can be used to determine the exact cause
of the problem.

101 Data in command is invalid
103 Request was not recognized
108 Shutdown is in progress
115 No such choice for the dialog
116 Unable to locate the dialog specified
117 Undefined element in xml request
118 A password is required to change settings and issue control commands
119 The Password sent does not match the stored password
121 Data for parameter setting is out of range or invalid
122 Automated job processing must first be stopped
126 System startup has not yet completed
127 Kiosk mode not settable because of manual recorders
129 Kiosk mode not settable in Job Streaming mode
130 Kiosk mode not settable in Bulk Read mode
131 Both CD-R and DVD-R input bins are required
132 At least 1 input only or input/output bin is required
133 At least 1 output only or output/reject bin/slot is required
134 Mailbox is disabled due to small media size, so no output specified
135 At least 1 reject or output/reject bin/slot is required
137 All bins cannot be specified as Input/Output. Specify one as Output/Reject
138 No bins can be specified as Input/Output in FIFO mode
140 Server description length is limited to 30 characters
144 Another request being processed must complete first
145 Server is already in paused state
146 The Server is in the process of pausing which needs to complete
147 The Server is already in a running state
148 Invalid order status update interval
149 Invalid value for maximum recording speed
151 Verify password command failed
152 Name of parameter invalid
153 ‘Kiosk' or 'Unattended' mode cannot be used with manual recorders
154 'Kiosk' or 'Unattended' mode cannot be used with Auto Bulk Read mode
155 'Kiosk' mode permitted only when running as Services
156 'Unattended' mode not available when running as Services
157 Server mode must be 'Attended' for this operating mode
158 Must specify at least one cache drive
159 Invalid letter was found for cache drive
160 Checksum DLL is not present
161 Invalid loader number specified
162 Bins settings may not be changed on this autoloader
163 Invalid bin number specified
164 No mailslot present on autoloader

110700_L 87

165 Autoloader does not support this media size
167 No CD-R drives in loader
168 No DVDR drives in loader
169 No recorders in loader
170 No reader attached to server
171 Specified verify frequency is out of range
172 Invalid barcode angle specified
173 Invalid audio read speed specified
174 Invalid media code specified
175 Invalid ink level error threshold specified
176 No DVDR-DL drives in loader
178 No DVDR-BD drives in loader
182 Combination media type requires media-specific input bins
185 Autoloader has no DVDR-BD-DL drives attached
186 Autoloader bins cannot be set to input/output
187 Invalid prints remaining threshold specified for order pickup disabling
188 Media type can't be set for single-bin loader
189 No external bin present on autoloader
190 Invalid recording retries parameter value
200 Internal error (not client's fault)
304 Attempted to resume a job on paused system
305 Attempted to resume a job not suspended
306 Attempted to suspend a job already suspended
308 Unable to do operation since job is being canceled
310 Job does not exist or is no longer active
312 Job has already produced this quantity
314 Unknown change requested for order
315 Invalid quantity for order
316 Pausing is not allowed in bulk read mode when jobs are in process
317 Unable to change quantity when order is part of an order set
330 Specified transporter is disabled or does not exist
331 Specified recorder is disabled or does not exist
332 Specified printer is disabled or does not exist
352 Flash operation timed out
356 Flash firmware does not match any connected transporter
357 Unable to open flash file
358 Unable to determine size of flash file
359 Unable to get the version number of the flash
360 Error occurred while uploading data to device
361 Printer Flash file must be exactly 65536 bytes in length
362 Update flash operation failed on the device
363 Flash firmware does not match any connected recorder
364 Unable to allocate buffer space for updating device
365 Unable to access a required offset in flash file
366 Flash firmware does not match any connected printer
367 Unable to change baud rate of device to update
368 Flash file is not intended for this device
369 Invalid device type specified for flash upload
370 Device must be updated using an external tool
371 Flash update was ended due to unknown reason

Appendix D – Error Codes

380 Enable device operation was not successful
381 Device is already enabled
382 Specified transporter is offline or does not exist
383 Specified recorder is offline or does not exist
384 Specified printer is offline or does not exist
386 Failed to get license unlocking codes
387 Invalid status lamp combination
388 Failed to set license activation codes
389 Failed to set pay-per-click key in autoloader
390 Failed to set a VKEY in autoloader
391 Failed to get a VKEY from an autoloader
392 Failed to set pay-per-click hot folder
393 Failed to get printer temperature
394 Device is already disabled
400 Feature not licensed
500 Failed to parse server request XML message
501 Requests from WebRSM and System Watch have been disabled on this server
502 An exception occurred while processing the request

Image Order Status Codes
The following table lists the error codes that can be returned from the Imager Server regarding failed image
orders. These codes are in the ErrorCode field of the ImageOrderStatus message. The ErrorMessage field will
give additional information that can be used to determine the exact cause of the problem.

2 Error loading Zip or modify image DLL
3 Error while reading source file from streamer
11 User generated cancel, example QuickDisc
14 The editlist was empty
15 Error returned from ZIP
16 Unknown error, internal imaging problem, should never happen
208 Error while writing or opening data file
210 Error reading source data file
212 Error creating or opening image file or no file system in order
213 Error sizing image file, either empty or verification failed
215 Error writing image file
216 Image file too large
219 Too many subdirectories, only for ISO9660 limit of 8
220 File already in image, duplicate destination file name
228 File larger than 4.2G for ISO level 1 and 2 or UDF1.02
230 Invalid data source file name, open or write failed
231 Invalid operating system file name, bad characters or length
232 Invalid HFS volume or file name
400 Canceled by system, RSM or other management program
500 XML parsing error, badly formed XML on order or request messages
501 Message server error, eMS returned an error from some operation
502 XML create error from status or configuration XML messages

110700_L 89

	Important Information
	Support Information
	Learn More Online

	Introduction
	Overview
	Installed Location

	Client API Design
	Client API Use of XML
	XML Encoding Format for Production Server and Imaging Server
	Rimage DTDs
	DTD Location
	DTD Versions

	Client ID and Order ID Uniqueness Rules
	The ClientID and OrderID uniqueness rules:

	Client API Programming Class Definitions
	System-Related Operations Group
	Server-Related Operations Group
	Order-Related Operations Group

	System Management
	Connect to the System
	SystemManager.Disconnect()
	Sample Code
	Start/End Session using .NET with C#
	Start/End Session using Java
	Start/End Session using C++
	Start/End Session using C
	Start/End Session using VB 6

	Listen for System Events
	SystemListener.onSystemStatus()
	SystemListener.onSystemException()
	SystemListener.onClusterCreated()
	SystemManager.onClusterDeleted()
	SystemManager.removeSystemListener()
	Sample Code
	Listen for System Events using .NET with C#
	Listen for System Events using Java
	Listen for System Events using C++
	Listen for System Events using C
	Listen for System Events using VB 6

	Server Management
	Listening for Server Events
	Sample Code
	Listen for Server Events using .NET with C#
	Listen for Server Events using Java
	Listen for Server Events using C++
	Listen for Server Events using C
	Listen for Server Events using VB 6

	Synchronous Server Methods
	Sample Code
	Server Methods using .NET with C#
	Server Methods using Java
	Server Methods using C++
	Server Methods using C
	Server Methods using VB 6

	Order Management
	Submit Orders
	Order Management Methods
	OrderDescription Parameter
	XMLOrder Parameter
	OrderStatusListener

	OrderDescription
	OrderDescription Object as a Return Value
	Cancel an Order in Process
	Recover Orders
	OrderDescription Base Class
	ImageOrderDescription Sub Class
	ProductionOrderDescription Sub Class

	Streaming
	Changes to ImageOrder
	Changes to ProductionOrder

	Spanning
	Process Flow of a Spanned Disc Set
	Changes to ImageOrder
	Interpreting ImageOrderStatus
	OrderSet (New)
	Changes to ProductionOrder

	Order Management Sample Code
	Order Management using .NET with C#
	Order Management using Java
	Order Management using C++
	Order Management using C
	Order Management using VB 6

	Server Status and Control Protocol
	Server Command Synchronization
	Password Protection on Commands
	Production Server Commands
	Command Summary
	Command Reply
	Command Details

	Imaging Server Commands
	Command Summary
	Command Reply
	Command Details

	Deployment
	Java Deployment
	Build Information
	Required Files

	.NET Deployment
	Build Information
	Required .NET Assembly Files

	C / C++ / VB 6 Deployment
	Build Information
	Required Linker Options
	Required Files and Folders

	Required DLL Files (Unicode)
	Required DLL Files (Non-Unicode)
	Microsoft visual C++ 2013 Redistributable Pack is Required.
	Required LIB Files (Unicode)
	Required LIB Files (Non-Unicode)
	Required Include Directories
	Required #include Statements
	Optional files
	64 bit deployment
	Appendix A – Sample Source Code Projects
	Appendix B – Sample XML Documents
	Image Order Samples
	ISO L2 with Editlist Image Order
	ISO L2 from Parent Folder Image Order
	RockRidge Image Order

	Production Order Samples
	Audio Production Order
	Blue Book Production Order
	Mode 1 Production Order
	Print Only Production Order
	Data Disc Production Order

	Order Status Samples
	Image Order Status
	Production Order Status

	Spanning XML Samples
	Image Order
	Image Order Status
	Order Set
	Order Set Status
	Production Orders
	Production Order Statuses

	Server Configuration Samples
	Production Server Configuration
	Imaging Server Configuration

	Server Dialog Samples
	Alert Dialog
	Error Dialog

	Server Request / Reply Samples
	GetServerStatus Request
	GetServerStatus Reply
	SetParameter Request
	SetParameter Reply

	Appendix C – Server Status and Control Password Encryption
	Encryption Method
	Rimage Core Encryption Algorithm
	Password Encoding Samples Using C++
	Encoding and Decoding a MBCS String
	Encoding and Decoding a Unicode String

	Appendix D – Error Codes
	Production Order Status Codes
	Production Server Reply Error Codes
	Image Order Status Codes

