

Rimage Rapid API Programming Guide
For Rimage Software Development Kit 9.0

Table of Contents - Support Contact Information

Corporate Headquarters:
Rimage Corporation
7725 Washington Avenue South
Minneapolis, MN 55439
USA
800-553-8312 (toll free US)
Service: +1 952-946-0004 (Mexico/Latin
America)
Fax: +1 952-944-6956

European Headquarters:
Rimage Europe GmbH Albert-
Einstein-Str. 26
63128 Dietzenbach
Germany
Tel: +49 6074-8521-0
Fax: +49 6074-8521-100

Asia/Pacific Headquarters:

Rimage Japan Co.,
Ltd. 2F., WIND Bldg.
7-4-8 Roppongi Minato-ku,
Tokyo 106-0032 JAPAN
Tel: +81-3-5771-7181
Fax: +81-3-5771-7185

Rimage Corporation reserves the right to make
improvements to the equipment and software described in
this document at any time without any prior notice. Rimage
Corporation reserves the right to revise this publication and
to make changes to the content hereof without obligation
of Rimage Corporation to notify any person or organization
of such revisions or changes.
This document may contain links to web sites that were
current at the time of publication, but may have moved or
become inactive since. This document may contain links to
sites on the Internet that are owned and operated by third
parties. Rimage Corporation
is not responsible for the content of any such third- party
site.
©2014, Rimage Corporation
Rimage® is a registered trademark of the Rimage
Corporation. Rimage SDK™ is a trademark of the Rimage
Corporation. Rimage Disc Publishing is a division of Rimage
Corporation. Dell™ is trademark of Dell Computer
Corporation. FireWire™ is a trademark of Apple Computer,
Inc.
All other trademarks and registered trademarks are the
property of their respective owners.
The most recent version of this document can be found
at www.Rimage.com/support/rimage.

i

http://www.qumu.com/support/rimage

Table of Contents
Table of Contents .. ii
Important Information ... iv

Support Contact Information ... iv
Learn More Online ... iv
Technical Support .. v
Optical Disc Recording Software Disclaimer .. v

Introduction .. 1
Rapid API Features ... 1
Get Started ... 1

Work with the API ... 2
Work with Sessions .. 2

Client Session.. 3
SingleConnectionSession .. 3
Connection ... 3

Work with Listeners .. 3
Listener Callback Options ... 4

Work with Jobs ... 4
Create a Job .. 6
Set Job Data ... 6
Jobs Spanning Multiple Discs .. 6
Set Job Parameters ... 7
Submit a Job... 7
Durable Jobs .. 8
Monitor Jobs .. 8
Recover Durable Jobs ... 9
Recover Durable Jobs of Client ... 9

Work with Parameters .. 9
Work with Servers .. 10

Work with Server Alerts ..11
Work with Server Orders ...12

Memory Management .. 13
Enumerate Objects ... 13
Exception Handling ... 14

Customize the API .. 15
Extend Job Classes .. 15

Job Factory ..16
Generate Custom Job XML .. 18

Customize ImageOrder XML ..19
Customize ProductionOrder XML ...20
XML Writer Factory ...20
Modifying XML Directly ...22

Generate Custom Server Request XML .. 22

Samples ... 24

ii

Table of Contents - Support Contact Information
Deployment .. 25

C++ Deployment ... 25
Build Information ..25
Required Files and Folders ..25

.NET Deployment.. 26
Build Information ..26
Required Files and Folders ..26
Required .NET Assembly Files ..26
64 Bit Deployment ..27

Appendix A .. 28
Client ID and Job ID Uniqueness Rules .. 28

Appendix B .. 29
Reference Documentation .. 29

iii

Important Information - Support Contact Information

Important Information
Support Contact Information

US, Canada, Latin America

Rimage Corporation
7725 Washington Avenue South
Minneapolis, MN 55439
USA
Attn: Rimage Services

Email: support@rimage.com
Telephone:
North America: 800-553-8312
Mexico/Latin America: 952-944-8144
Fax: 952-944-7808

Europe

Rimage Europe GmbH
Albert-Einstein-Str. 26
63128 Dietzenbach
Germany

Email: support@rimage.de
Telephone: +49 6074-8521 0
Fax: +49 6074-8521-100

Asia/Pacific

Rimage Japan Co., Ltd.
2F., WIND Bldg.
7-4-8 Roppongi Minato-ku,
Tokyo 106-0032 JAPAN

Email: apsupport@rimage.co.jp
Telephone: +81-3-5771-7181
Fax: +81-3-5771-7185

Contact Rimage Services

Website: www.Rimage.com/support/rimage

Knowledge Base: www.Rimage.com/support/rimage
Log in and select the Ask a Question tab

When you contact Rimage Rimage Services, please provide:

• System serial number and software version
• Functional and technical description of the problem
• Exact error message received

Copy this information from your Rimage product for future reference.
Note: Make sure you update the Serial Number here anytime you
receive a replacement system.

Serial Number:

Product Name:

Date of Purchase:

Learn More Online
At www.Rimage.com/support/rimage, you can experience Rimage’s world-class Support and Services.

From the Support home page:
1. Select your product series.
2. Select your product.
3. Learn more on the product

page.

From your product page you can access:
• Information about the latest software and firmware updates

• Product specifications

• The latest documents

• Current firmware and driver downloads

iv

mailto:support@rimage.com
mailto:support@rimage.de
mailto:apsupport@rimage.co.jp
http://www.qumu.com/support/rimage
http://www.qumu.com/support/rimage
http://www.qumu.com/support/rimage

Important Information - Technical Support
Technical Support
Support for the Rimage Professional System is available through your authorized reseller.

Optical Disc Recording Software Disclaimer
This Product, Software, or Documentation may be designed to assist you in reproducing material in which you own
the copyright or have obtained permission to copy from the copyright owner. Unless you own the copyright or
have permission to copy from the copyright owner, you may be violating copyright law and be subject to payment
of damages and other remedies. If you are uncertain about your rights, you should contact your legal advisor. If
you are neither in possession of the copyright nor have authorization from the owner of the copyright,
unauthorized copying of copyrighted material on an optical disc or any other media violates national and
international legislation and can result in severe penalties.

v

Introduction - Rapid API Features

Introduction
Rimage has developed an interface for programmers to integrate their software with the Rimage system quickly and
easily. This interface is called the Rapid API, referred to in this document as Rapid API or simply the API.
• The Rapid API is included on the Rimage Software Development Kit (SDK) disc.
• The Rapid API is supported on Windows platforms only.
• The Rapid API supports C++ and all .NET languages.
• This document includes information about the Rapid API, which requires Rimage Software Suite version 8.4 or

above.

Rapid API Features
• The Rapid API eliminates the need for XML creation and parsing - an object oriented interface is presented.
• The Rapid API presents a job level interface encapsulating imaging and production orders – eliminating the need

to administer order management details.
• The Rapid API offers the ability to set up either a single or multiple job listeners.
• The Rapid API offers the ability to set up connection listener and server listeners, called session listener.
• The Rapid API can make calls back to the application on the application’s main user interface or UI thread or

some other UI thread – eliminating problems with updating UI components from a non-UI thread.

Note: .NET 2.0 generates an exception if a UI component is being updated on a non-UI thread.

• The Rapid API offers the ability to extend Job classes to implement functionality not provided by default.
• The Rapid API also offers the ability to customize Job XML to implement functionality not provided by default.

Get Started
Note: Before you install the Rapid API, Rimage Software Suite 8.4 or later must be installed on the PC connected to
the Rimage autoloader (the Control Center).

1. Install the Software Development Kit.
2. Open sample project(s) and run sample program(s) to familiarize yourself with the Rapid API and the

programming environment. Sample programs are located in
C:\Users\Public\Documents\Rimage\RimageSDK\Samples\RapidApi by default. Select the
appropriate project type and open the project in Visual Studio 2013. Refer to Samples on page 24 for more
information

3. Create a program to publish your first disc by implementing the following:

Note: These steps are shown in the “Hello World” samples.

a. Set up a session listener – this is an optional step.
SingleConnectionSession.GetInstance().SetSessionStatusListener()

b. Set up a default job listener – this is an optional step.
SingleConnectionSession.GetInstance().SetDefaultJobListener()

c. Establish a connection to a Messaging Server.
SingleConnectionSession.GetInstance().Connect()

d. Create a Job.
Job job = SingleConnectionSession.GetInstance().CreateImageAndRecordJob()

110899_E.docx For more information visit: www.rimage.com/support 1

http://www.rimage.com/support

Work with the API - Work with Sessions
e. Set Job parameters.

job.AddParentFolder() job.SetLabelFile()
f. Submit a Job.

SingleConnectionSession.GetInstance().SubmitJob()

g. Receive Job statuses if listeners were set up.
IJobStatusListener.OnJobStatus() // callback

h. Disconnect from the messaging server.
SingleConnectionSession.GetInstance().Disconnect()

Work with the API
This Programming Guide gives an overview of the classes in the Rapid API. For much more detailed information
access the HTML help files located by default, in C:\Program Files (x86)\RimageSDK\ApiSdk\doc.

Note: This document uses \Program Files\ and \Program Files (x86)\ as part of the installation path. The former is
for 32 bit Windows installations and the latter is for Windows 64.

Begin working with the API by creating a Rimage session (SingleConnectionSession class), which encapsulates a
connection to the Rimage Messaging server with your application. A connection is represented by the Connection
class. Refer to Work with Sessions on page 5 for more information.

Note: A connection to Messaging Server is needed in order to process jobs, manage servers, and receive system
notifications.

Set up Job and Session listeners for your application to be asynchronously notified of job statuses, server
alerts, etc. These listeners can be set up before a connection is established. An application can implement
the ISessionStatusListener interface, IJobStatusListener interface, or both and pass the objects to the
SingleConnectionSession class. Refer to Work with Listeners on page 6.

Note: An application is not required to set up listeners.

Job class hierarchy represents the heart of the Rapid API. A Job class encapsulates the details of submitting,
processing, and receiving job statuses through the JobStatus class. The caller creates an appropriate type of job, sets
data paths and parameters, and submits the job. Refer to Work with Jobs on page 7.

Note: It is possible to create a job object and set job object parameters without establishing a connection to the
Rimage Messaging server. A Messaging server connection must exist in order for an application to submit a job.

Rapid API maintains objects representing Rimage servers that are available for processing jobs. Servers can be
accessed through the SingleConnectionSession or Connection classes. Servers allow server settings to be changed
and read, server state changes, and iterating through current alerts. Refer to Work with Servers on page 12.

Note: An application is not required to work with servers.

Work with Sessions
To begin working with the Rapid API, initiate a client session with the Rimage system. A session object is created and
the application maintains a reference to only one session object. Through the session object, the application can
manage jobs (create, submit, retrieve, etc.), connections, servers and server alerts, and set listeners.

2 For more information visit: www.rimage.com/support 110899_E.docx

http://www.rimage.com/support

Work with the API - Work with Listeners
Client Session
The ClientSession class is the base class for all sessions. This class is never instantiated directly. It exposes methods
that are common to all types of sessions, such as job creation, enumerating over jobs, servers, and alerts, and setting
job and session listeners.
Session type specific methods, such as submitting a job for processing, are exposed by ClientSession subclasses. A
subclass’ GetInstance() static method is called to get an instance of a session - this is the starting point of working
with the Rapid API.

Note: Currently Rapid API offers only one ClientSession subclass – SingleConnectionSession.

SingleConnectionSession
SingleConnectionSession is currently the only subclass of ClientSession. The Rapid API supports a connection to only
one messaging server at any one time. The client application is free to connect and disconnect from any number of
messaging servers on the network, but it can be connected to only one at a time.
To get an instance of a single connection session, use the static method SingleConnectionSession.GetInstance().
Rimage recommends the client application always accesses ClientSession and SingleConnectionSession through
SingleConnectionSession.GetInstance() method. For example:
• C++: SingleConnectionSession::GetInstance()->Connect()

• C#: SingleConnectionSession.GetInstance().Connect()

Note: SingleConnectionSession class inherits all the ClientSession methods which eliminates the need to hold onto a
reference to ClientSession class.

Connection
Connection class encapsulates information about a connection to the messaging server and allows operations that are
specific to this connection such as enumerating servers connected to the same messaging server or submitting a job to
those servers. The Connection class also offers information methods about the connection itself, such as messaging host
and port currently connected to, client ID, and Rimage system folder.

Note: A Connection object is automatically created when ConnectionSession.Connect() method is called.

Work with Listeners
The client application can asynchronously receive two types of events, job status events and session events. Job status
events notify the application about the progress of a specific job. Session events include server alerts, connection drops,
and server state changes.
1. The client application implements the listener interfaces.

class SampleUserJobListener : IJobStatusListener { }
class SampleUserSessionListener : ISessionStatusListener { }

2. And gives the listener object references to the Rapid API.
SingleConnectionSession.SetDefaultJobListener()
SingleConnectionSession.SetSessionStatusListener()

3. Statuses are asynchronously delivered to the application through the listener objects when they arrive.

110899_E.docx For more information visit: www.rimage.com/support 3

http://www.rimage.com/support

Work with the API - Work with Jobs
4. An application can remove the listeners at any time.

SingleConnectionSession.RemoveDefaultJobListener()
SingleConnectionSession.RemoveSessionStatusListener()

Note: An application can also set up job status listeners on individual job objects. If the default listener and a
specific job listener are set, then all statuses for that job are received twice by the application – once by the default
listener and once by the job specific listener.

Important! Client application methods that implement the ISessionStatusListener and IJobStatusListener
interfaces should not throw exceptions back to the API. If an exception is thrown, it is logged and the API
continues to process without notifying the user.

Listener Callback Options
Listener objects are called by the Rapid API on a thread. The client application has control over which thread is used
when its listener objects are called by the API. The application specifies its intention when it sets up the listener. A
listener can be called back on one of three different threads:
• Application’s main UI thread – this is the most common option for UI applications. This eliminates a potential

issue with updating UI components from a non-UI thread. Also, most UI applications have only one UI thread –
the main application thread. To be called back on the main UI thread, setup the listener like this:
SingleConnectionSession.SetDefaultJobListener(IJobStatusListener,
CallbackOnMainUIThread.True)

• An application’s UI worker thread – in some cases an application creates a UI worker thread. The Rapid API needs
the UI worker thread’s ID and calls the listener back on this thread. To be called back on a UI worker thread, setup
the listener like this:
SingleConnectionSession.SetDefaultJobListener(IJobStatusListener,
CallbackUIThreadId)

• Rapid API thread – in cases when there is no UI thread, or the application does not update a UI component with
status information, it may be more advantageous to receive listener events on a worker thread. This is
recommended for console applications. To be called back on the Rapid API’s thread, setup the listener like this:
SingleConnectionSession.SetDefaultJobListener(IJobStatusListener,
CallbackOnMainUIThread.False)

Work with Jobs
The main purpose of the Rimage publishing system is to record discs with data and print labels on those discs. This
process is facilitated by the Imaging and Production servers. Sometimes other applications are required, such as
imaging data to an image file to be recorded on a disc at a later time, or printing a label on a previously recorded
disc. Rapid API accommodates all of these scenarios by providing three basic types of Job classes.
• ImageAndRecordJob is the most common type of job that images and records data and optionally prints a label.

This type of job utilizes both Imaging and Production servers.
• ImageOnlyJob is the job type that creates an image file to be recorded on a disc at a later time. This type of

job utilizes only the Imaging server.
• ProductionOnlyJob exists for recording an existing image file on disc, printing a label on an existing disc, or to

make an audio CD which requires no prior imaging. This type of job utilizes only the Production server.
The Job class hierarchy can be divided into three levels:
1. First level consists of the Job base class from which all job classes inherit. This class exposes methods common to

4 For more information visit: www.rimage.com/support 110899_E.docx

http://www.rimage.com/support

Work with the API - Work with Jobs
all types of jobs, such as job ID and common parameters.

2. Second level consists of ImageAndRecordJob, ImageOnlyJob, ProductionOnlyJob – these classes encapsulate the
types of Rimage jobs discussed above. This level of classes expose all methods necessary for a job type. These
classes implement the IImageOptions interface, the IProductionOptions interface, or both interfaces.

3. Third level consists of specific job type classes which represent the most common types of Rimage jobs. These job
classes have default parameter values to match their specific types. Refer to the Job Parameter Defaults table on
page 10 for more information. For example, the default media type for a UDFJob is DVDR, but the default media
type for an ISOJob is CDR.
The above diagram also shows two key interfaces: IImageOptions and IProductionOptions. These interfaces specify the
contract for jobs that are processed by Imaging server, Production server, or both.
IImageOptions interface exposes methods for specifying data to be imaged as well as settings which control how
that data is to be imaged, for example, ISO Level 2 or UDF Version 1.02.
IProductionOptions interface contains methods that allow specification of information such as the label file and the
list of audio or data tracks, to record on the disc. It also allows specification of production settings such as media type
and number of copies.
Second level classes that implement the IImageOptions interface are ImageAndRecordJob and ImageOnlyJob because
both of these job types involve the imaging of data.

Job JobStatuscreates

1 1

ClientSession creates

1

SingleConnectionSession

ImageAndRecordJobImageOnlyJob

ImageOptions
«interface»

ProductionOptions
«interface»

ProductionOnlyJob

HFSJob

ISOJob

UDFJob

HybridJob

BlueBookJob

AudioJob

BlueBookFromImageJob

ReadJob

FromImageJob

LabelOnlyJob

UDFImageOnlyJob

ISOImageOnlyJob

HFSImageOnlyJob

HybridImageOnlyJob

110899_E.docx For more information visit: www.rimage.com/support 5

http://www.rimage.com/support

Work with the API - Work with Jobs
Second level classes that implement the IProductionOptions interface are ImageAndRecordJob and ProductionOnlyJob
because both of these job types use Production server to record a disc.

Create a Job
Job objects can be created from job classes of the second and third levels. The first level Job base class is declared
abstract.
To create a specific type of job, use one of the following methods:

ImageAndRecordJob ClientSession.CreateImageAndRecordJob(JobType)
ImageOnlyJob ClientSession.CreateImageOnlyJob(JobType)
ProductionOnlyJob ClientSession.CreateProductionOnlyJob(JobType)

The JobType parameter tells the API which job to create. If the JobType parameter is specified as a third level type, such
as UDFJobType, then the caller is required to cast the returned reference to the correct type. For example:
C++

UDFJob* job = (UDFJob*)SingleConnectionSession::GetInstance()->
CreateImageAndRecordJob(UDFJobType)

C#
UDFJob job = (UDFJob)SingleConnectionSession.GetInstance().
CreateImageAndRecordJob(JobType.UDFJobType)

Set Job Data
After a job is created, setup the data and change any related settings. Communicate to the Rimage system which data to
record on the disc. For ImageAndRecordJob and ImageOnlyJob this is accomplished with the AddParentFolder()
method. An Editlist is specified by calling the AddEditList() method. Multiple parent folders and Editlists can be given to
a job.
For a ProductionOnlyJob an image file must be specified with the AddDataTrack() method. Multiple data tracks can
be recorded on a disc. For an audio job, AddAudioTrack() can be called multiple times.
The SetLabelFile() method is available on ImageAndRecordJob and ProductionOnlyJob to communicate to the API
which label to print on the disc.
When a file is given to the API, (e.g. AddParentFolder()) a second parameter of type ConvertToUNC enum is passed
in. This parameter tells the API whether or not to convert the file path to a UNC path so it is accessible from the
network.
For example:
If C:\Rimage is the parent folder path, this folder is shared as Rimage, and the second parameter is ConvertToUNC.True,
then the path \\<computername>\Rimage is given to the server. This is useful when the Rimage servers are running on
other computers on the network.
Some data, such as a parent folder or label file, have parameters that are specific to the data. Set and Get methods exist
which take the original path given to the API as the first parameter and a key/value pair for the rest. For example:

void SetLabelFileParam(String labelFile, LabelFileParamType key, String value)

String GetLabelFileParam(String labelFile, LabelFileParamType key)

Refer to Work with Parameters on page 12.

Jobs Spanning Multiple Discs
If the data specified for an ImageAndRecordJob is too large for the specified media - more than 750MB for CDR, or
more than 4.3GB for DVDR, etc. - Rimage Imaging and Production servers can produce multiple discs for that job,
spanning the data across the discs.
To allow the Rimage system to span discs for a job, set the AllowSpanning property to true. By default this property

6 For more information visit: www.rimage.com/support 110899_E.docx

http://www.rimage.com/support

Work with the API - Work with Jobs
is false.
C++

void ImageAndRecordJob::AllowSpanning(bool value)
bool ImageAndRecordJob::IsSpanning()

C#
ImageAndRecordJob.AllowSpanning { bool get(); void set(bool) }

Set Job Parameters
The remaining job settings are divided into three categories:
• Common job settings are managed with SetJobParam() and GetJobParam(). These settings encompass

parameters that are common to all job types.
• Imaging job settings are managed with SetImageParam() and GetImageParam(). These methods are specified by the

IImageOptions interface and are implemented by the ImageAndRecordJob and ImageOnlyJob classes.
• Production job settings are managed with SetProductionParam() and GetProductionParam(). These

methods are specified by the IProductionOptions interface and are implemented by the
ImageAndRecordJob and ProductionOnlyJob classes.

Refer to Work with Parameters on page 12.

Job Parameter Defaults
When a third level job class is created, parameters are set to the most reasonable default values for the created job
type. The following table lists the default settings for all the third level jobs.

ImageAndRecordJob Defaults
ISOJob Image format = ISO Level 2, Media type = CDR
UDFJob Image format = UDF Version 1.02, Media type = DVDR

HybridJob Image format = ISO Level 2, HFS, Media type = CDR

BlueBookJob Image format = ISO Level 2, Media type = CDR

HFSJob Image format = HFS, Media type = CDR
ImageOnlyJob Defaults
ISOImageOnlyJob Image format = ISO Level 2

UDFImageOnlyJob Image format = UDF Version 1.02

HybridImageOnlyJob Image format = ISO Level 2, HFS

HFSImageOnlyJob Image format = HFS

ProductionOnlyJob Defaults
AudioJob Media type = CDR

LabelOnlyJob Media type = CDR

BlueBookFromImageJob Media type = CDR

FromImageJob Media type = CDR

ReadJob No defaults required

Submit a Job
To submit a job for processing, the application simply calls

void SingleConnectionSession.SubmitJob(Job)

The Rapid API validates parameters set on the job for correctness before it sends the job out to the servers for
processing. Validation includes:
1. Checking for incorrect parameter values.
2. Checking for incompatible parameter combinations. For example ISO and UDF format settings cannot coexist

110899_E.docx For more information visit: www.rimage.com/support 7

http://www.rimage.com/support

Work with the API - Work with Jobs
in a single job – it’s either a UDF job or an ISO job.

Durable Jobs
To submit a job so its status can be recovered after a crash use
• C++: SingleConnectionSession::SubmitDurableJob(Job)
• .NET: SingleConnectionSession.SubmitDurableJob(Job)
This ensures that the client application using the Rapid API never loses job statuses, even in case of a crash or network
disconnect.
Refer to the Recover Durable Jobs section on page 11 for more information.

Monitor Jobs
Each Job object holds onto a JobStatus object which represents the current status of the job at all times, even before
a job is submitted. To access the JobStatus object call
C++

JobStatus Job.GetStatus()
To access the current state of the job call
C++

JobStateType JobStatus.GetState()
.NET

Job.Status
JobStatus.State

A job is in one of the following states at any one time
JobNotStarted
JobSubmittedForImaging
JobSubmittedForProduction
JobInProcess
JobComplet
ed
JobCancell
ed
JobFailed

JobStatus contains other information such as percent completed, error code and error message in case of failure, IDs
of the servers processing the job, etc. The application is free to access the JobStatus object for a job at any time.
Another way to monitor job progress is to set up job listeners. If a listener is set up, a default listener or a job specific
listener, the application is notified asynchronously with a callback to the IJobStatusListener.OnStatus() method every
time the status changes. The job ID and a reference to the JobStatus object for that job are passed into the callback
method.

Important! The application should not hold onto a Job Status reference passed into the callback. It should retrieve
the JobStatus reference from the Job object every time. The JobStatus object in this case is temporary and may be
out of scope as soon as the callback method ends.

Notes:
• It is much more efficient to be notified through a listener versus polling for job status proactively.
• Finished jobs can be removed from the Rapid API’s cache by calling ClientSession.RemoveFinishedJobs(). For durable

jobs, this also deletes the durable job files stored the “MyDocuments\MyRimage\DurableJobs” folder.

8 For more information visit: www.rimage.com/support 110899_E.docx

http://www.rimage.com/support

Work with the API - Work with Parameters

Recover Durable Jobs
In case of an application crash or shutdown, or a network problem during job processing the flow of current job
statuses is interrupted. To recover missed job statuses, the application needs to call:
C++:

SingleConnectionSession::RecoverDurableJobs()Connection::RecoverDurableJobs()
NET:

SingleConnectionSession.RecoverDurableJobs()Connection.RecoverDurableJobs()

at next startup or reconnect to the Rimage system.

This sends stored job statuses to the client application. Rapid API internally creates all the recovered Job and
JobStatus objects. If the client application sets up a default JobStatusListener before calling RecoverDurableJobs()
then recovered job statuses are sent to the listener.

Session class method RecoverDurableJobs() recovers all durable jobs, not only the jobs for the Connection that was
just made to Rimage. Connection class method RecoverDurableJobs() only recovers durable jobs that were
submitted previously by this Connection.

Recover Durable Jobs of Client
This is similar to the previous Recover Durable Jobs methods except that it allows the client to be specified.

In the case of an application crash, shutdown, or a network problem during job processing the flow of current job
statuses is interrupted. To recover missed job statuses for a specific client the application can call:
C++:

SingleConnectionSession::RecoverDurableJobsOfClient(LPCTSTR ClientId)
Connection::RecoverDurableJobs()

NET:
SingleConnectionSession.RecoverDurableJobsOfClient(String ClientId)
Connection.RecoverDurableJobsOfClient()

at next startup or reconnect to the Rimage system.

This sends stored job statuses to the client application. Rapid API internally creates all the recovered Job and
JobStatus objects. If the client application sets up a default JobStatusListener before calling RecoverDurableJobs()
then recovered job statuses are sent to the listener.

Session class method RecoverDurableJobsOfClient() recovers all durable jobs for the specified client, not only the
jobs for the Connection that was just made to Rimage. Connection class method RecoverDurableJobsOfClient()
only recovers durable jobs that were submitted previously by this Connection.

If ClientId is null, then the function acts like RecoverDurableJobs and gets statuses for all clients.

Work with Parameters
Throughout the Rapid API one encounters methods of this pattern

void SetSomethingParam(EnumType key,String value)
String GetSomethingParam(EnumType key)

The API groups similar parameters for Job or Server classes, into categories. Each category is represented by setter
and getter methods as well as by an enumerated type. The enumerated type encapsulates the possible parameters
for the category. For example the IImageOptions interface has the following methods using the

110899_E.docx For more information visit: www.rimage.com/support 9

http://www.rimage.com/support

Work with the API - Work with Servers
ImagingTargetParamType enumerated type.

void SetImageParam(ImagingTargetParamType key, String
param) String GetImageParam(ImagingTargetParamType key)
enum ImagingTargetParamType {
TargetImagingClusterParam
TargetImagingServerParam
LastImagingTargetParamType };

Note: Every enumerated type ends with a delimiter value in the pattern: “Last<enumname>ParamType” –
LastImagingTargetParamType in the above example. This enumerated value is for internal use only.

The value of the parameter, whether set or retrieved, is always represented by a string type (LPCTSTR in C++ and
System. String in .NET). Some parameter values are just text, such as the
ImagingTargetParamType.TargetImagingServerParam which requires the ID of a server.
Other parameters only accept values in a specific set, such as FormatParamType.ISOLevelParam which only accepts
none, 1, or 2. Constants exist for all predefined values. For this example they are:
C++

FORMAT_ISO_NONE
FORMAT_ISO_9660_L1
FORMAT_ISO_9660_L2

.NET
JobParamValues.FormatISONone
JobParamValues.FormatISO_9660_L1
JobParamValues.FormatISO_9660_L2

Other parameters only accept true or false, such as FormatOptionParamType.ForceUpperCaseParam. Predefined
constants exist for these values as well:
C++

RAPID_TRUE
RAPID_FALSE

.NET
ParamValues.True
ParamValues.False

Rapid API validates parameter values as soon as possible. If a parameter value for a specific parameter doesn’t match
the allowed set of values, an exception is thrown to the application. This pattern of setting and getting parameters
allows the Rapid API to keep the number of class methods small.

Note: For a detailed explanation of all enumerated types and appropriate values, access the HTML help files
located, by default, in C:\ Program Files (x86)\RimageSDK\ApiSdk\doc.

Work with Servers
When the client application connects to a messaging server, the Rapid API starts collecting information about
Rimage servers on behalf of the application. Server objects are never instantiated by the client application, instead
they are created by the API when a specific server is detected online. The server objects represent either the
Imaging or the Production servers available on the network. The application is notified of server state change events
if a session status listener is set up.
The Server classes expose server related interfaces available to the client application. The application can pause and
resume a server, retrieve server information, change server settings, and much more.

10 For more information visit: www.rimage.com/support 110899_E.docx

http://www.rimage.com/support

Work with the API - Work with Servers
Server objects can be enumerated by initializing an iterator with either ClientSession or Connection objects. Refer to
Enumerate Objects on page 15.
Server objects also keep track of alerts currently active on a Rimage server. Alerts represent warning and error
conditions, such as out of discs, recording failure, etc. Refer to Work with Server Alerts on page 14.
An application can also query a server for a list of orders currently in process on that server. Refer to Work with Server
Orders on page 14.

Server is a base class for two concrete server types – ImagingServer and ProductionServer. The subclasses inherit all
the Server methods as well as offering specific methods for each server type.
• ProductionServer class extends the Server class and adds functionality specific to the Production server. It allows

the caller to get information about disc input and output bins, recorders, printers, and to change Production
specific settings.

• ImagingServer class extends the Server class and adds functionality specific to the Imaging Server, such as
retrieving Imaging server specific information.Refer to Work with Parameters on page 12.

Note: Offline servers can be removed from the Rapid API’s cache by calling ClientSession.RemoveOfflineServers() or
Connection.RemoveOfflineServers().

Work with Server Alerts
A server alert represents a warning or an error condition encountered by a server. Most of the alerts require a user
action, such as putting more discs in the input bin of an autoloader. Some alerts can be answered programmatically.
A ServerAlert object is attached to a Server object by the API when it is generated by a Rimage server. The application is
notified of a new or acknowledged alert if a session status listener is set up.
ServerAlert objects can be enumerated by initializing an iterator with either a ClientSession or a Server object. Refer to
Enumerate Objects on page 15.
The typical application handles alerts in the following way:
1. A server sends out an alert.
2. The client application receives notification of the alert in SessionStatusListener.OnServerAlert() callback method.
3. The client application displays the alert in a dialog. The dialog shows buttons with corresponding strings

received from ServerAlert.GetNumReplies() and ServerAlert.GetReplyText() methods.
4. An operator resolves the alert condition (places more blank discs in the input bin for example).

ServerServerOrder

1*
ServerAlert

1 *

ImagingOrder ProductionOrder ImagingServer ServerErrorProductionServer

110899_E.docx For more information visit: www.rimage.com/support 11

http://www.rimage.com/support

Work with the API - Work with Servers
5. The operator clicks on one of the buttons which triggers a call to reply to one of the server’s alerts. There are

three methods to choose from to reply to a ServerAlert:
• ReplyWithActionId() is the preferred method. This allows the caller to pass in a unique action ID for that

specific reply. For a finite set of action IDs in the Rimage system, refer to Server Alert Action IDs located at
C:\Program Files (x86)\RimageSdk\Manuals\Programming Guides\ Server Alert Action IDs Reference.pdf. An
Action ID can be retrieved from an alert by calling GetReplyActionId(int index).

• ReplyWithText() method allows the caller to pass in the same string as the one displayed on the button. The
text string can be retrieved from an alert by calling GetReplyText(int index).

• ReplyWithIndex() method allows the caller to pass in the index of the reply, starting with index 0.
6. The server receives the reply, checks that the condition has been fixed, and sends out an alert acknowledgement.
7. Rapid API updates the status of the ServerAlert object.
8. The client application receives the alert acknowledgement through the SessionStatusListener.

OnServerAlert() method with AlertAcknowledged value.

Note: Acknowledged alerts can be removed from the Rapid API’s cache by calling Server.
RemoveAcknowledgedAlerts() or ClientSession.RemoveAcknowledgedServerAlerts().

Work with Server Orders
Server classes allow you to work with any orders that are currently active on a certain server. These orders are
submitted by a client application on the network, this may include orders submitted by client applications other than
your own.
Orders are represented by ServerOrder base class and ImagingOrder and ProductionOrder subclasses.
Server orders are attached to a Server object by the API after an application makes a call to
Server.RefreshInfo(ServerInf oRefreshType.RefreshActiveOrders) method. Information that a client application
retrieves from server orders is similar to the information obtained from a JobStatus object, such as ID, percent
completed, copies completed, etc. ServerOrder objects can be enumerated by initializing an iterator with a Server
object. You can also retrieve a list of orders that are pending to be processed. To do this call
C++:

Connection::InitPendingOrderIterator()
NET:

Connection.GetPendingOrders()

This call allows you to retrieve pending orders on a combination of specific connection and cluster. The rest of the
parameters let you filter the list even further. You can specify a combination of the following filters:
• clientId - limit the list to orders authored by a specific client application
• serverId - limit the list to orders targetted to a specific server
• maxOrders - limit the number of orders in the returned list
• targetedOrdersOnly - specifies if the returned orders are only ones targeted to a specific server or not targeted at
all. You can also call
C++:

Server::InitPendingOrderIterator()
.NET:

Server.GetPendingOrders()

to limit the list to orders targeted to the server object you’re using. The parameters for this method have the same
meanings as the parameters above.

12 For more information visit: www.rimage.com/support 110899_E.docx

http://www.rimage.com/support

Work with the API - Memory Management

Memory Management
The caller never uses the new operator to create instances of any of the Rapid API’s classes. To create a Job object,
Rapid calls one of three methods: CreateImageOnlyJob(), CreateProductionOnlyJob(), or
CreateImageAndRecordJob(). The method called then calls Job Factory class(es) to create jobs. A JobStatus object is
created by the Job class, Server and ServerAlert objects are instantiated by the API, etc.
The application almost never calls the delete operator on the API objects because Remove*() methods exist on
various classes. Examples include ClientSession.RemoveAcknowledgedServerAlerts() and
ClientSession.RemoveFinishedJobs(). It is also possible to delete a specific finished job by calling
ClientSession.RemoveJob().
When an application disconnects from the Messaging Server, the Server and ServerAlert objects are removed. Job
objects are not removed. The reason Job objects are not removed is that the same Job object can be processed on
one messaging connection and then submitted for processing on a new connection if the application disconnects
from the first connection and then connects to a different Messaging Server.

Enumerate Objects
Rapid API instantiates objects on the caller’s behalf and maintains lists of those objects internally. The API offers a
way for the client application to retrieve references to those objects, such as a Job or Server object.
Various classes have methods to retrieve an object by its ID. Examples include Connection.GetServer() and
Server.GetAlert(). The fastest way to retrieve an object, such as an Alert or Server object, is to use the ID.
If however an application needs to list all objects of a certain type, such as Jobs or ServerAlerts for a specific Server,
then it can use various classes to initialize an iterator and enumerate over the whole list.

Note: The term Enumerator is used to match .NET terminology.

In C++, the caller initializes an Iterator of a specific type by using one of the Init*Iterator() methods on the classes that
offer iterator functionality, such as ClientSession. Once an Iterator object has been initialized, the application can list
all of the objects by calling Iterator.Next() in a loop. In C#, or any other .NET language, the call to a Get*s() method is
made, such as ClientSession.GetServers(). This methods returns an object which implements the IEnumerable<T>
interface.
This enables the use of the C# ‘foreach’ construct (‘For Each’ in Visual Basic). The enumerator can be obtained as well
by calling IEnumerable<T>.GetEnumerator() method.

Note: An initialized Iterator is like a snapshot in time. For example, if a new Server object is created by the API
while the caller is enumerating Server objects, the new object is not retrieved by the Iterator.

Important! Calling one of the Remove*() methods to delete objects on one thread while enumerating the objects
being removed on another thread can result in a null pointer or a null reference exception.

110899_E.docx For more information visit: www.rimage.com/support 13

http://www.rimage.com/support

Work with the API - Exception Handling
Example: Enumerate over Job Objects
C++:

JobIterator iter;
SingleConnectionSession::GetInstance()->InitJobIterator(iter);
while (iter.HasMore())
{

C#:
Job job = iter->Next();

}
foreach(Job job in SingleConnectionSession.GetInstance().GetJobEnumerator())
)
{
// Work with the job object
string jobId = job.JobId;

Exception Handling
Most Rapid API methods throw an exception in case of an error, whether it’s a connection related error or a parameter
validation error. The type of the exception thrown is always RimageException. It is recommended that calls to the API
methods are always wrapped in a try catch block as shown in this example:
C++

try
{
SingleConnectionSession::GetInstance()->Connect(
“client1”, “localhost”, “2506”);

}
catch (RimageException &re)
{
// Rapid API error occurred
LPCTSTR error = re.GetErrorMessage();
int errorCode = re.GetErrorCode();

}
catch (. . .)
{
// anything else

}
C#

try
{
SingleConnectionSession.GetInstance().Connect(
“client1”, “localhost”, “2506”);

}
catch (RimageException re)
{
// Rapid API error occurred
string error = re.Message;
int errorCode =
re.ErrorCode;

}
catch (Exception se)

{
// anything else

}

14 For more information visit: www.rimage.com/support 110899_E.docx

http://www.rimage.com/support

Customize the API - Extend Job Classes

Customize the API
The functionality offered by the Rapid API is sufficient for most applications. There are times however when an
application needs to do something different than what the API offers out of the box. Several options are available.
1. Customizing a job by extending one of the Job classes. For example, setting all job parameters in the constructor

of the derived class to avoid polluting the application code.
2. Extending an XMLWriter class to generate custom XML. This is useful when the provided Job classes don’t

offer certain functionality, such as specifying a sub index for audio tracks.

Note: The data and settings are converted to one or two XML orders before the job is submitted for processing.

3. Combination of 1 and 2.
4. Extending XML writer class to generate custom XML for a server request.

Note: Almost all server operations are covered by the API out of the box.

Extend Job Classes
Only the second and third level Job classes can be extended by a client application. If an application needs
functionality that is significantly different from what is offered by the third level classes, then it may make sense to
extend the second level Job classes. Refer to Work with Jobs on page 7 for more information on the Job class.

Note: Second level classes perform less validation than the third level classes because the job types are less specific
at the second level.

When a Job derived class is extended by the client application, almost every method is available for override
because most methods in the Job hierarchy are declared virtual.
A common reason for extending a Job class is to encapsulate the initialization in the subclass’ constructor. Any data or
parameter setting method can be called from the constructor of the derived class.

Note: For reasons specific to the .NET Rapid API implementation, the derived class’ constructor needs to be left
blank. Instead, a virtual method Initialize() is available for this purpose.

Example: Extend a Job class

C++

class SampleUserJob : public ISOJob
{
public:
SampleUserJob()
{
SetImageParam(IsJolietParam, RAPID_TRUE);
SetProductionParam(CopiesParam, “5”);
SetProductionParam(MediaTypeParam, MEDIA_TYPE_DVDR_DL);

}
virtual ~SampleUserJob() {}

};

110899_E.docx For more information visit: www.rimage.com/support 15

http://www.rimage.com/support

Customize the API - Extend Job Classes
C#

class SampleUserJob : ISOJob
{
public SampleUserJob() {} // needs to be left blank
public override void Initialize()
{
SetImageParam(FormatParamType.IsJolietParam, ParamValues.True);
SetProductionParam(ProductionJobParamType.CopiesParam, “5”);
SetProductionParam(ProductionJobParamType.MediaTypeParam,
JobParamValues.MediaTypeDVDR_DL);

}

The UML diagram to the right
illustrates the above example. The
diagram also shows another key class
involved in job customization,
IJobFactory interface.

Job Factory
Once you write your class you must instantiate it at runtime. To instantiate a custom class, Rapid API requires access to a
Job object factory.
Rapid API internally uses a default job factory to create existing Job objects. To create a user defined Job object, the
API requires a user defined Job factory. The client application implements the IJobFactory interface and gives the
custom factory to the API.
When a ClientSession.Create*Job() method is called by the application, a job type is passed in. If the job type is
one of the user types, the custom job factory is called instead of the default to create an appropriate object.
Twenty-four custom job types can be created by an application. They are listed below:
• UserImageAndRecordJobType1 through UserImageAndRecordJobType8 for Job classes extended from the

ImageAndRecordJob or its descendants.
• UserImageOnlyJobType1 through UserImageOnlyJobType8 for Job classes extended from the ImageOnlyJob or

its descendants.
• UserProductionOnlyJobType1 through UserProductionOnlyJobType8 for Job classes extended from the

ProductionOnlyJob or its descendants.
IJobFactory interface has two methods that need to be implemented
• Job CreateJob(JobType) creates the custom job by using a new operator.
• bool RemoveJob(Job) uses the delete operator to remove the custom job.

Job

ImageAndRecordJob

ClientSession

SampleUserJobFactory

1

1

ISOJob

SampleUserJob create

1*

1

*

IJobFactory

16 For more information visit: www.rimage.com/support 110899_E.docx

http://www.rimage.com/support

Customize the API - Extend Job Classes

Note: Unless there are native resources to release or delete, the RemoveJob() method doesn’t need to do anything.

Example: Implementing a Job Factory
C++:

class SampleUserJobFactory : public IJobFactory
{
public:
SampleUserJobFactory(){}
virtual ~SampleUserJobFactory()
{} Job* CreateJob(JobType type)
{
if (type == UserImageAndRecordJobType1)
{
return new SampleUserJob();

}
return NULL; // not created by custom factory

}
bool RemoveJob(Job *job)
{
if (job != NULL && job->GetJobType() == UserImageAndRecordJobType1)
{
delete job;
return true; // removed

}
return false; // not removed by custom factory

}
};
SingleConnectionSession::GetInstance()->SetUserJobFactory(
new SampleUserJobFactory());

C#
class SampleUserJobFactory : IJobFactory
{
public SampleUserJobFactory() {}
public Job CreateJob(JobType
type)
{
if (type == JobType.UserImageAndRecordJobType1)
{
return new SampleUserJob();

}
return null; // not created by custom factory

}

bool RemoveJob(Job job)
{
return true; // garbage collector will clean up the Job

}
}
SingleConnectionSession.GetInstance().SetUserJobFactory(
new SampleUserJobFactory());

110899_E.docx For more information visit: www.rimage.com/support 17

http://www.rimage.com/support

Customize the API - Generate Custom Job XML
IJobFactory2 is an alternative interface available for C++ users. This interface is derived from IJobFactory and
has the added method GetClassNameOfType() to aid reading durable Job XML when a custom job is created.
C++ users can choose either the IJobFactory interface or the IJobFactory2 interface.

Generate Custom Job XML
Custom XML generation is available when more functionality is required beyond extending specific Job classes. The
Rimage system processes every submitted job according to one or two XML orders – an Imaging order, a Production
order, or both. Imaging orders are specified by the ImageOrder DTD and Production orders are specified by the
ProductionOrder DTD.

Note: DTDs are located in the Rimage system folder, C:\Rimage\XML by default.

The Rapid API allows you to extend the ImageXmlWriter class, the ProductionXmlWriter class, or both.

Note: The API also allows custom Job classes to coexist with custom XML generation.

This diagram shows the XML writer class hierarchy. The base class is XmlWriter. This class exposes methods common
to all types of DTDs such as setting and getting DTD version and path information. It also exposes a virtual method
called FormatXml() which is the entry point into XML generation. Subclasses of XmlWriter implement this method to
generate XML specific to their type.
XMLWriter class implements the FormatXml() method in the following way:

void XmlWriter.FormatXml()
{
FormatDocType(GetStringBuffer());
FormatRootElement(GetStringBuffer()); // implemented by a
subclass FormatDetails(GetStringBuffer()); // implemented by a
subclass FormatCloseRootElement(GetStringBuffer());

XmlWriter XmlStringBuffer

1 1

OrderXmlWriter

ImageXmlWriter ProductionXmlWriter

UserProductionXmlWriter

IXmlWriterFactory

UserXmlWriterFactory-create

1*

ClientSession

1

*

1

1

18 For more information visit: www.rimage.com/support 110899_E.docx

http://www.rimage.com/support

Customize the API - Generate Custom Job XML
XmlWriter class has a protected member GetStringBuffer(). This method allows access to the XmlStringBuffer
object which makes generating XML simple. XmlStringBuffer class offers methods such as WriteStartElement()
and WriteAttribute() which take care of XML formatting details allowing the programmer to concentrate on the
business logic. This buffer is passed into every formatting method.
Two XmlWriter subclasses - ImageXmlWriter and ProductionXmlWriter – are used by the Rapid API to generate
job related XML. To customize XML generation for jobs, extend ImageXmlWriter and ProductionXmlWriter. The
ImageXmlWriter class generates an ImageOrder XML string and the ProductionXmlWriter generates a
ProductionOrder XML string.

Customize ImageOrder XML
ImageXmlWriter.FormatDetails() writes elements and attributes which govern how the image is created. The body of
the method looks like this:

void ImageXmlWriter.FormatDetails(XmlStringBuffer xmlStrBuffer)
{
AddTarget(xmlStrBuffer);
AddFormat(xmlStrBuffer);
AddSource(xmlStrBuffer);
AddOutput(xmlStrBuffer);
AddRules(xmlStrBuffer);
AddVolumeName(xmlStrBuffer);
AddPVDInfo(xmlStrBuffer);
AddControls(xmlStrBuffer);
AddCustomize (xmlStrBuffer);

}
The ImageXmlWriter.FormatDetails() method is declared virtual which allows it to be completely overwritten. In
most cases only a certain element needs to be changed. In those cases it is sufficient to overwrite only one of the
methods that is called from the FormatDetails() method, such as AddFormat(). For example:
C++

class SampleUserImageXmlWriter : public ImageXmlWriter
{
public:
SampleUserImageXmlWriter(){}
virtual ~SampleUserImageXmlWriter() {}
void AddFormat(XmlStringBuffer &xmlStrBuffer)
{
// custom code here

}
};

C#
class SampleUserImageXmlWriter : ImageXmlWriter
{
public SampleUserImageXmlWriter(){}
protected override void AddFormat(XmlStringBuffer xmlStrBuffer)
{
// custom code here

}
};

Note: Refer to the ImageOrder DTD located at C:\ Program Files (x86)\RimageSDK\ApiSdk\XML for the ImageOrder
format details.

110899_E.docx For more information visit: www.rimage.com/support 19

http://www.rimage.com/support

Customize the API - Generate Custom Job XML
Customize ProductionOrder XML
ProductionXmlWriter.FormatDetails() writes elements and attributes which govern how the disc is recorded and
what label to print. This is the same pattern used by ImageXmlWriter. The body of the method looks like this:

void ProductionXmlWriter.FormatDetails(XmlStringBuffer xmlStrBuffer)
{
AddActions(xmlStrBuffer);

}
The ProductionXmlWriter.FormatDetails() method is declared virtual which allows it to be completely overwritten.
In most cases only a certain element needs to be changed. In those cases it is sufficient to overwrite one of the
methods that is called from the FormatDetails() method, such as AddCustomize(). For example:
C++

class SampleUserProductionXmlWriter : public ImageXmlWriter
{
public:
SampleUserProductionXmlWriter()
{}
virtual ~ SampleUserProductionXmlWriter() {}
void AddCustomize(XmlStringBuffer
&xmlStrBuffer)
{
// custom code here

}
};

C#
class SampleUserProductionXmlWriter : ImageXmlWriter
{
public SampleUserProductionXmlWriter(){}
protected void AddCustomize(XmlStringBuffer xmlStrBuffer)
{

// custom code here
}

};

Note: Refer to the ProductionOrder DTD located at C:\ Program Files (x86)\RimageSDK\ApiSdk\XML for the
ProductionOrder format details.

XML Writer Factory
Once you write your extended XML writer class, you need to instantiate it at runtime. To instantiate a custom class,
Rapid API requires access to an XmlWriter factory.
Rapid API internally uses a default XML writer factory to create existing XmlWriter objects. To create a user extended
XmlWriter object, the API requires a user defined XmlWriter factory. The client application implements the
IXmlWriterFactory interface and passes the custom factory to the API.
IXmlWriterFactory interface requires implementation of three methods:
• CreateImageXmlWriter(JobType) uses the new operator to create the custom ImageXmlWriter object. To specify

the type of XML, a JobType is passed in to the XmlWriter factory.
• CreateProductionXmlWriter(JobType) uses the new operator to create the custom ProductionXmlWriter object.

To specify the type of XML, a JobType is passed in to the XmlWriter factory.
• RemoveWriter(XmlWriter) uses the delete operator to remove the custom XmlWriter object.

20 For more information visit: www.rimage.com/support 110899_E.docx

http://www.rimage.com/support

Customize the API - Generate Custom Job XML

Note: Unless there are native resources to release or delete, the RemoveWriter() method doesn’t need to do
anything.

Example: Implementing an XML writer factory
C++

class SampleUserXmlWriterFactory : public IXmlWriterFactory
{
public:
SampleUserXmlWriterFactory()
{}
virtual ~SampleUserXmlWriterFactory() {}
ImageXmlWriter* CreateImageXmlWriter(JobType type)
{
if (type == ISOJobType)
{
return new SampleUserImageXmlWriter();

}
return NULL; // not created by custom factory

}
ProductionXmlWriter* CreateProductionXmlWriter(JobType type)
{
if (type == UDFJobType)
{
return new SampleUserProductionXmlWriter();

}
return NULL; // not created by custom factory

}
bool RemoveWriter(XmlWriter *writer)
{
if (writer != NULL)
{
delete writer;
return true; // removed

}
return false; // not removed by custom factory

}
};
SingleConnectionSession::GetInstance()-
>SetUserXmlWriterFactory(new SampleUserXmlWriterFactory());

C#

class SampleUserXmlWriterFactory : IXmlWriterFactory
{
public SampleUserXmlWriterFactory() {}
public ImageXmlWriter CreateImageXmlWriter(JobType type)
{
if (type == JobType.ISOJobType)
{
return new SampleUserImageXmlWriter();

}
return null; // not created by custom factory

110899_E.docx For more information visit: www.rimage.com/support 21

http://www.rimage.com/support

Customize the API - Generate Custom Server Request XML
}
public ProductionXmlWriter CreateProductionXmlWriter(JobType type)
{
if (type == UDFJobType)
{
return new SampleUserProductionXmlWriter();

}
return null; // not created by custom factory

}
public void RemoveWriter(XmlWriter writer)

};
SingleConnectionSession.GetInstance().SetUserXmlWriterFactory(
new SampleUserXmlWriterFactory());

Note: For more information on customizing job XML refer to the Rapid Custom sample project located at
C:\Users\Public\Documents\Rimage\RimageSDK\Samples\RapidApi

Modifying XML Directly
Another callback method is available to allow changes to the image and production order XML strings without the
complexity of implementing a custom XML class. This is done by implementing the IXmlModifyListener interface,
which contains a single callback method named OnModifyOrderXml. This method is invoked once immediately
before Image order submission and once again before Production order submission. The order XML strings that are
passed in may be changed, but any modifications must still meet the DTD validation requirements or the job will be
rejected.
This interface was created to aid the integrator in cases where adjustments to the XML were required, but without the
complexity of creating a custom job and job factory.

NOTE: It is very important that the OrderId not be changed, doing so will cause status messages to be lost. The
OrderId is used as an index to find messages that belong to a specific job.

Generate Custom Server Request XML
Server classes provide most of the functionality offered by the Rimage Imaging and Production servers. In cases where
functionality is required that isn’t provided or a newer server request DTD exists, custom server request XML can be
generated. This is accomplished by extending the XmlWriter class and completely taking over XML generation. The
extended XmlWriter class still has access to the XmlStringBuffer and all detailed formatting methods required to
generate a valid XML string.

Note: The two DTDs involved in server requests are ProductionServerRequest and ImageServerRequest located at
C:\Program Files (x86)\RimageSDK\ApiSdk\XML.

Once the XML is generated, call Server.ExecuteRequest(String) to send it to the server for processing. When the
server completes the request, it replies with XML formatted to conform to either the ProductionServerReply or
the
ImageServerReply DTD. Call the Server.GetXml() method to access this XML. The following example illustrates the
flow:

22 For more information visit: www.rimage.com/support 110899_E.docx

http://www.rimage.com/support

Customize the API - Generate Custom Server Request XML
C++

// generate xml
LPCTSTR requestXml = GenerateProductionRequest(); // user defined method
// get a reference to a
server Server *server =
SingleConnectionSession::GetInstance()->GetServer(“HOST1_PS01”);
// execute the request
try
{
// this call can time out
server->ExecuteRequest(requestXml);

}
catch (RimageException &e)
{
// handle the exception

}
// get the reply
LPCTSTR replyXml = server->GetXml();
// parse the reply xml

C#
// generate xml
string requestXml = GenerateProductionRequest(); // user defined method
// get a reference to a
server Server server =
SingleConnectionSession.GetInstance().GetServer(“HOST1_PS01”);
// execute the request
try
{
// this call can time out
server.ExecuteRequest(requestXml);

}
catch (RimageException e)
{
// handle the exception

}
// get the reply
string replyXml = server.GetXml();
// parse the reply xml

XmlWriter class requires the generated XML to include the DTD file path. This is accomplished by communicating the
DTD name, version, and folder location of the DTD file to the API.
To generate a valid server request XML, overwrite two XmlWriter virtual methods FormatRootElement() and
FormatDetails(). To write out the XML header for the request, overwrite the FormatRootElement() method.

Note: ProductionXmlWriter and ImageXmlWriter classes write out the correct header automatically.

The following example shows how to generate the ‘Get autoloader status’ request.
C++

class SampleUserPSRequestXMLWriter : public XmlWriter
{
public:
SampleUserPSRequestXMLWriter(

110899_E.docx For more information visit: www.rimage.com/support 23

http://www.rimage.com/support

Samples - Generate Custom Server Request XML
)
{
SetDtdName(“ProductionServerRequest”);
SetDtdFileVersion(“1.4”);
SetDtdFolderPath(“c:\\rimage\\xml”);

}
protected:
void FormatRootElement(XmlStringBuffer &xmlStrBuffer)
{
xmlStrBuffer.WriteStartElement(GetDtdName(), 0);
xmlStrBuffer.WriteAttribute(“ServerId”, “SWRASKINREST_PS01”);
xmlStrBuffer.WriteAttribute(“ClientId”, “client1”);

}
void FormatDetails(XmlStringBuffer &xmlStrBuffer)
{
xmlStrBuffer.WriteStartElement(“GetServerStatus”, 1);
xmlStrBuffer.WriteAttribute(“GetAutoloaderStatus”, “true”);
xmlStrBuffer.WriteCloseElement(“GetServerStatus”);

}
};

C#
class SampleUserPSRequestXMLWriter : XmlWriter
{
public SampleUserPSRequestXMLWriter()
{
SetDtdName(“ProductionServerRequest”);
SetDtdFileVersion(“1.4”);
SetDtdFolderPath(“c:\\rimage\\xml”);

}
protected override void FormatRootElement(XmlStringBuffer xmlStrBuffer)
{
xmlStrBuffer.WriteStartElement(GetDtdName(), 0);
xmlStrBuffer.WriteAttribute(“ServerId”, “SWRASKINREST_PS01”);
xmlStrBuffer.WriteAttribute(“ClientId”, “client1”);

}
protected override void FormatDetails(XmlStringBuffer xmlStrBuffer)
{
xmlStrBuffer.WriteStartElement(“GetServerStatus”, 1);
xmlStrBuffer.WriteAttribute(“GetAutoloaderStatus”, “true”);
xmlStrBuffer.WriteCloseElement(“GetServerStatus”);

}
}

Note: For more information on customizing server request XML, refer to the Rapid Custom sample project located
at C:\Users\Public\Documents\Rimage\RimageSDK\Samples\RapidApi

AddMedia(xmlStrBuffer);
AddTarget(xmlStrBuffer);
AddInOut(xmlStrBuffer);

Samples
The Rimage SDK installation includes sample projects for working with the Rapid API. By default these projects are
placed in the C:\Users\Public\Documents\Rimage\RimageSDK\Samples\RapidApi folder. The samples are
broken into C++ and .NET (written in C#) samples. C++ samples are located under the \C++ subfolder and C# samples
are in the \NET subfolder.

24 For more information visit: www.rimage.com/support 110899_E.docx

http://www.rimage.com/support

Deployment - C++ Deployment
Three sample projects are available for each environment, they are:
• Rapid Hello World – this sample project is an introduction to the Rapid API. This sample takes the user through

the most basic steps of connecting, creating and submitting a job, and disconnecting. This is meant to help you
produce your first disc as quickly as possible.

• Rapid Comprehensive – this sample project includes examples of how to use the whole API. This includes setting
up listeners, creating and customizing jobs, enumerating Rapid API objects, working with servers and alerts, and
much more.

• Rapid Custom project – this sample project shows how to extend various classes to customize jobs and
XML generation.

Two sample are available for C++ only.
• Rapid ReadJob (C++ only) – this sample project introduces ReadJob and allows users to run in two modes—

bulk mode or non-bulk mode.
• Rapid MFC (C++ only) – this sample project was created in Visual Studio 2013 as an MFC dialog based

application. It has a fully functional GUI and support for server alerts and durable job recovery.

Deployment
C++ Deployment

Build Information
The Rapid API has been compiled using the Visual Studio 2013 VC12 compiler. Rimage DLLs include their version in
the name of the file. The name/version has the following format:
<name>_<major>_<minor>_n_<interface>.dll
• Major version is seldom incremented, but is done for significant architectural or feature changes.
• Minor version is incremented if a DLL is changed for a new release. Applications using this DLL need to be rebuilt.
• ‘n’ represents an internal build version for a specific minor version. The actual File version of the dll has a

number in place of ‘n’. For example if the dll is named RmRapid_9_0_n_1.dll, the File version of this dll could
be 9 .0.26.1.

• Interface version represents iterations of the API itself. If the exported interface of the DLL itself is changed,
this version is incremented and the applications using this DLL need to be rebuilt.

Note: The _u option indicates Unicode versions; no _u indicates non-Unicode versions.

Required Files and Folders
The following files and directories are required in C++ projects. Specify the paths and specify the .lib files (either
Unicode or non-Unicode) as indicated.

Required DLL Files (Non-Unicode)

Installed by default in: (on Windows 64 it will be C:\Program Files (x86)\)
C:\Program Files\RimageSdk\ApiSdk\bin and \bin(x64).
RmRapid_9_0_n_1.dll
RmClient_9_0_n_8.dll
RmDiscover_1_3_n_2.dll
RmRms_1_6_n_2.dll

Microsoft Visual C++ 2013 SP1 Redistributable Package is required.

110899_E.docx For more information visit: www.rimage.com/support 25

http://www.rimage.com/support

Deployment - .NET Deployment

Required DLL Files (Unicode)

Installed by default in: (on Windows 64 it will be C:\Program Files (x86)\)
C:\Program Files\RimageSdk\ApiSdk\bin and \bin(x64).
RmRapid_9_0_n_1_u.dll
RmClient_9_0_n_8_u.dll

RmDiscover_1_3_n_2.dll

RmRms_1_6_n_2.dll

Required LIB Files (Non-Unicode. Does not apply to .NET deployment.)

RmRapid_9_0_n_2.lib

Required LIB Files (Unicode. Does not apply to .NET deployment.)

RmRapid_9_0_n_2_u.lib

Required Include Directory (Does not apply to .NET deployment.)

Installed by default in C:\Program Files\RimageSdk\ApiSdk\include\rapid

Required #include Statement (Does not apply to .NET deployment.)

#include <RapidApiInclude.h>

(This file contains all headers files for the Rapid API.)

Optional Files

rmapi_log.properties – Place this file in your application’s working folder to produce a Client API log
file. rapid_log.properties – Place this file in your application’s working folder to produce a Rapid API
log file. These files can be found in C:\Program Files\RimageSdk\ApiSdk\bin folder.

.NET Deployment

Build Information
The Rapid API has been compiled using Visual Studio 2013 and can support .NET Version 4.0 and higher.
Rimage.Rapid.Api assembly implements the.NET API. This assembly can be used in any application written in a .NET
supported language.
This assembly is strongly named, which among other things means that Common Run Time (CLR) takes the Assembly
version of this assembly into account at load time.

Required Files and Folders
The following files are required in C#, VB.NET, or any other .NET project.

Required .NET Assembly Files
Installed by default in C:\ Program Files (x86)\RimageSdk\ApiSdk\bin.
Rimage.Rapid.Api.dll

26 For more information visit: www.rimage.com/support 110899_E.docx

http://www.rimage.com/support

Deployment - .NET Deployment
The rest of the file list is identical to the Unicode list in C++ Required Files and Folders section.

64 Bit Deployment
SDK 9.0 includes x86 and x64 dlls and libs.
File system location for x86 files: C:\ Program Files (x86)\RimageSdk\ApiSdk\bin and \lib.
File system location for x64 files: C:\ Program Files (x86)\RimageSdk\ApiSdk\bin (x64) and \lib (x64).

Note: 64-bit sample projects for C++ and C# are available in
C:\Users\Public\Documents\Rimage\RimageSDK\Samples\RapidApi folder.

110899_E.docx For more information visit: www.rimage.com/support 27

http://www.rimage.com/support

Appendix A - Client ID and Job ID Uniqueness Rules

Appendix A
Client ID and Job ID Uniqueness Rules

Note: A JobID is automatically generated if you do not provide one.

Each ClientID and JobID must be unique. To ensure job uniqueness, Rimage makes the following recommendations:
• The ClientID must be used to connect to Messaging Server (eMS). Messaging Server requires ClientID uniqueness

and returns an error when connected if a non-unique ClientID is detected. This ensures ClientID uniqueness.

Note: Because more than one instance of an application can be run on one computer, the Rimage applications’
ClientID is in the form of <HostName> + _ + <ApplicationInstanceId>.

• Integrators must ensure that the JobIDs they generate for a client application are unique. There is still a
possibility that two clients will generate identical JobIDs, which is resolved as follows:

• Production and Imaging servers must take both JobIDs and ClientIDs into account to ensure order
uniqueness internally to the server.

To reiterate:
• The JobID is unique in the client application’s space.
• The ClientID is unique in Messaging Server (eMS) space. The ClientID includes the <HostName> + _ +

<ApplicationInstanceId>.

Note: Alphanumeric character entries are typical for the ClientID and JobID. The period . and backslash \ must be
excluded from the ClientID and JobID entries.

28 For more information visit: www.rimage.com/support 110899_E.docx

http://www.rimage.com/support

Appendix B - Reference Documentation

Appendix B
Reference Documentation
For more information about Editlists, refer to the document located at: C:\
Program Files (x86)\RimageSdk\Manuals\Programming Guides\Editlists.pdf

For more information about label merge fields, refer to the document at:
C:\ Program Files (x86)\RimageSdk\Manuals\Programming Guides\ Using Label Merge Fields.pdf

For more information on server alert Action IDs, refer to the document at:
C:\ Program Files (x86)\RimageSdk\Manuals\Programming Guides\ Server Alert Action IDs Reference.pdf

For more information on CD Text, refer to the document located at:
C:\ Program Files (x86)\RimageSdk\Manuals\Programming Guides\ Using CD Text.pdf.

110899_E.docx For more information visit: www.rimage.com/support 29

http://www.rimage.com/support

	Corporate Headquarters:
	European Headquarters:
	Asia/Pacific Headquarters:
	Rimage Japan Co., Ltd. 2F., WIND Bldg.
	7-4-8 Roppongi Minato-ku,
	Tokyo 106-0032 JAPAN
	Tel: +81-3-5771-7181
	Fax: +81-3-5771-7185
	The most recent version of this document can be found at www.Rimage.com/support/rimage.
	Table of Contents
	Important Information
	Support Contact Information
	Learn More Online
	Technical Support
	Optical Disc Recording Software Disclaimer

	Introduction
	Rapid API Features
	Get Started
	a. Set up a session listener – this is an optional step. SingleConnectionSession.GetInstance().SetSessionStatusListener()
	b. Set up a default job listener – this is an optional step. SingleConnectionSession.GetInstance().SetDefaultJobListener()
	c. Establish a connection to a Messaging Server. SingleConnectionSession.GetInstance().Connect()
	d. Create a Job. Job job = SingleConnectionSession.GetInstance().CreateImageAndRecordJob()
	f. Submit a Job. SingleConnectionSession.GetInstance().SubmitJob()
	g. Receive Job statuses if listeners were set up. IJobStatusListener.OnJobStatus() // callback
	h. Disconnect from the messaging server. SingleConnectionSession.GetInstance().Disconnect()

	Work with the API
	Work with Sessions
	Client Session
	SingleConnectionSession
	Connection

	Work with Listeners
	Listener Callback Options

	Work with Jobs
	Create a Job
	Set Job Data
	Jobs Spanning Multiple Discs
	Set Job Parameters
	Job Parameter Defaults

	Submit a Job
	Durable Jobs
	Monitor Jobs
	Notes:

	Recover Durable Jobs
	Recover Durable Jobs of Client

	Work with Parameters
	Work with Servers
	Work with Server Alerts
	Work with Server Orders

	Memory Management
	Enumerate Objects
	Example: Enumerate over Job Objects

	Exception Handling

	Customize the API
	Extend Job Classes
	Job Factory
	Example: Implementing a Job Factory
	IJobFactory2 is an alternative interface available for C++ users. This interface is derived from IJobFactory and has the added method GetClassNameOfType() to aid reading durable Job XML when a custom job is created. C++ users can choose either the IJo...

	Generate Custom Job XML
	Customize ImageOrder XML
	Customize ProductionOrder XML
	XML Writer Factory
	Example: Implementing an XML writer factory

	Modifying XML Directly

	Generate Custom Server Request XML

	Samples
	Deployment
	C++ Deployment
	Build Information
	Required Files and Folders
	Required DLL Files (Non-Unicode)
	Required DLL Files (Unicode)
	Required LIB Files (Non-Unicode. Does not apply to .NET deployment.)
	Required LIB Files (Unicode. Does not apply to .NET deployment.)
	Required Include Directory (Does not apply to .NET deployment.)
	Required #include Statement (Does not apply to .NET deployment.)
	Optional Files

	.NET Deployment
	Build Information
	Required Files and Folders
	Required .NET Assembly Files
	64 Bit Deployment

	Appendix A
	Client ID and Job ID Uniqueness Rules

	Appendix B
	Reference Documentation

